6,537 research outputs found

    Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup

    Get PDF
    Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD

    Acute kidney injury in the critically ill: an updated review on pathophysiology and management.

    Get PDF
    Acute kidney injury (AKI) is now recognized as a heterogeneous syndrome that not only affects acute morbidity and mortality, but also a patient's long-term prognosis. In this narrative review, an update on various aspects of AKI in critically ill patients will be provided. Focus will be on prediction and early detection of AKI (e.g., the role of biomarkers to identify high-risk patients and the use of machine learning to predict AKI), aspects of pathophysiology and progress in the recognition of different phenotypes of AKI, as well as an update on nephrotoxicity and organ cross-talk. In addition, prevention of AKI (focusing on fluid management, kidney perfusion pressure, and the choice of vasopressor) and supportive treatment of AKI is discussed. Finally, post-AKI risk of long-term sequelae including incident or progression of chronic kidney disease, cardiovascular events and mortality, will be addressed

    An investigation into the effects of commencing haemodialysis in the critically ill

    Get PDF
    <b>Introduction:</b> We have aimed to describe haemodynamic changes when haemodialysis is instituted in the critically ill. 3 hypotheses are tested: 1)The initial session is associated with cardiovascular instability, 2)The initial session is associated with more cardiovascular instability compared to subsequent sessions, and 3)Looking at unstable sessions alone, there will be a greater proportion of potentially harmful changes in the initial sessions compared to subsequent ones. <b>Methods:</b> Data was collected for 209 patients, identifying 1605 dialysis sessions. Analysis was performed on hourly records, classifying sessions as stable/unstable by a cutoff of >+/-20% change in baseline physiology (HR/MAP). Data from 3 hours prior, and 4 hours after dialysis was included, and average and minimum values derived. 3 time comparisons were made (pre-HD:during, during HD:post, pre-HD:post). Initial sessions were analysed separately from subsequent sessions to derive 2 groups. If a session was identified as being unstable, then the nature of instability was examined by recording whether changes crossed defined physiological ranges. The changes seen in unstable sessions could be described as to their effects: being harmful/potentially harmful, or beneficial/potentially beneficial. <b>Results:</b> Discarding incomplete data, 181 initial and 1382 subsequent sessions were analysed. A session was deemed to be stable if there was no significant change (>+/-20%) in the time-averaged or minimum MAP/HR across time comparisons. By this definition 85/181 initial sessions were unstable (47%, 95% CI SEM 39.8-54.2). Therefore Hypothesis 1 is accepted. This compares to 44% of subsequent sessions (95% CI 41.1-46.3). Comparing these proportions and their respective CI gives a 95% CI for the standard error of the difference of -4% to 10%. Therefore Hypothesis 2 is rejected. In initial sessions there were 92/1020 harmful changes. This gives a proportion of 9.0% (95% CI SEM 7.4-10.9). In the subsequent sessions there were 712/7248 harmful changes. This gives a proportion of 9.8% (95% CI SEM 9.1-10.5). Comparing the two unpaired proportions gives a difference of -0.08% with a 95% CI of the SE of the difference of -2.5 to +1.2. Hypothesis 3 is rejected. Fisher’s exact test gives a result of p=0.68, reinforcing the lack of significant variance. <b>Conclusions:</b> Our results reject the claims that using haemodialysis is an inherently unstable choice of therapy. Although proportionally more of the initial sessions are classed as unstable, the majority of MAP and HR changes are beneficial in nature

    Prognostic models in COVID-19 infection that predict severity: a systematic review.

    Get PDF
    Current evidence on COVID-19 prognostic models is inconsistent and clinical applicability remains controversial. We performed a systematic review to summarize and critically appraise the available studies that have developed, assessed and/or validated prognostic models of COVID-19 predicting health outcomes. We searched six bibliographic databases to identify published articles that investigated univariable and multivariable prognostic models predicting adverse outcomes in adult COVID-19 patients, including intensive care unit (ICU) admission, intubation, high-flow nasal therapy (HFNT), extracorporeal membrane oxygenation (ECMO) and mortality. We identified and assessed 314 eligible articles from more than 40 countries, with 152 of these studies presenting mortality, 66 progression to severe or critical illness, 35 mortality and ICU admission combined, 17 ICU admission only, while the remaining 44 studies reported prediction models for mechanical ventilation (MV) or a combination of multiple outcomes. The sample size of included studies varied from 11 to 7,704,171 participants, with a mean age ranging from 18 to 93 years. There were 353 prognostic models investigated, with area under the curve (AUC) ranging from 0.44 to 0.99. A great proportion of studies (61.5%, 193 out of 314) performed internal or external validation or replication. In 312 (99.4%) studies, prognostic models were reported to be at high risk of bias due to uncertainties and challenges surrounding methodological rigor, sampling, handling of missing data, failure to deal with overfitting and heterogeneous definitions of COVID-19 and severity outcomes. While several clinical prognostic models for COVID-19 have been described in the literature, they are limited in generalizability and/or applicability due to deficiencies in addressing fundamental statistical and methodological concerns. Future large, multi-centric and well-designed prognostic prospective studies are needed to clarify remaining uncertainties

    Charlson Comorbidity Index: A Critical Review of Clinimetric Properties

    Get PDF
    The present critical review was conducted to evaluate the clinimetric properties of the Charlson Comorbidity Index (CCI), an assessment tool designed specifically to predict long-term mortality, with regard to its reliability, concurrent validity, sensitivity, incremental and predictive validity. The original version of the CCI has been adapted for use with different sources of data, ICD-9 and ICD-10 codes. The inter-rater reliability of the CCI was found to be excellent, with extremely high agreement between self-report and medical charts. The CCI has also been shown either to have concurrent validity with a number of other prognostic scales or to result in concordant predictions. Importantly, the clinimetric sensitivity of the CCI has been demonstrated in a variety of medical conditions, with stepwise increases in the CCI associated with stepwise increases in mortality. The CCI is also characterized by the clinimetric property of incremental validity, whereby adding the CCI to other measures increases the overall predictive accuracy. It has been shown to predict long-term mortality in different clinical populations, including medical, surgical, intensive care unit (ICU), trauma, and cancer patients. It may also predict in-hospital mortality, although in some instances, such as ICU or trauma patients, the CCI did not perform as well as other instruments designed specifically for that purpose. The CCI thus appears to be clinically useful not only to provide a valid assessment of the patient’s unique clinical situation, but also to demarcate major diagnostic and prognostic differences among subgroups of patients sharing the same medical diagnosis

    PROTOCOLIZED VOLUME DE-RESUSCITATION IN CRITICALLY ILL PATIENTS

    Get PDF
    While early fluid resuscitation may be a necessary component to decrease mortality in the majority of critically ill patients admitted to the intensive care unit, the benefit of continued administration after the first 24 hours is less clear. Paradoxically, a positive fluid balance secondary to intravenous fluid receipt has been associated with diverse and persistent perpetuating detriment on a multitude of organ systems. Continued clinical harm has been demonstrated on pulmonary and renal function as well as patient outcomes such as rates of mortality and length of stay. Despite the growing body of evidence supporting the potential adverse aspects of positive fluid balances, fluid overload remains common in patients during the early days of critical care admission. One approach to correcting fluid balance is shifting focus onto the post- or de- resuscitation period with appropriate fluid removal with diuresis once hemodynamic stability is achieved. However, diuresis is often ineffective due to a lack of standardization in identification of fluid-overloaded patients. Further, optimal transition times between fluid resuscitation and fluid removal are not clear and physical signs of fluid overload are delayed relative to onset of organ damage. While administration of diuretics has shown to decrease net volume and improve clinical outcomes in the critically ill, current practice does not reflect clinical trial findings. Most treatment regimens are often inadequate both by nature of time and dosing intensity. Further, as de-resuscitation occurs once the initial instability has resolved, precedence is usually given to other acute or critical needs rather than follow-up for diuresis effectiveness. Additionally, frequent apprehension for medication side effects is seen, despite the preponderance of adverse event data found only in non-critical care populations, frequently non-translatable to patients within the intensive care unit. Optimization of diuresis in critically ill patients is primed for clinical pharmacy intervention. Clinical pharmacists are experts in the delivery of pharmaceutical care, utilizing specialized therapeutic knowledge, experience, and judgment to ensure optimal patient outcomes. Pharmacist-driven protocols for other conditions have shown improved patient outcomes, reduced adverse events and improved target attainment in before and after studies. A pharmacist- driven diuresis protocol to facilitate de-resuscitation implemented within the multidisciplinary critical care team has the potential to improve patient care by optimizing pharmacotherapy selection, while potentially reducing adverse events, days on mechanical ventilation and length of intensive care unit stay. Such a protocol rightfully places pharmacist accountability on medication-related outcomes while potentially decreasing critical care resource utilization. The work within this dissertation aims to accomplish the development of a pharmacist- driven diuresis protocol for implementation in the medical intensive care unit, with national pharmacy organization sponsorship. Further, the protocol aims to be adopted as an innovative practice change for de-resuscitation of critically ill patients to improve clinical outcomes while advancing the pharmacy profession

    Specific Etiologies Associated With the Multiple Organ Dysfunction Syndrome in Children: Part 2

    Get PDF
    To describe a number of conditions and therapies associated with multiple organ dysfunction syndrome (MODS) presented as part of the Eunice Kennedy Shriver National Institute of Child Health and Human Development MODS Workshop (March 26–27, 2015). In addition, the relationship between burn injuries and MODS is also included although it was not discussed at the Workshop

    The 4-Hour Cairns Sepsis Model: a novel approach to predicting sepsis mortality at intensive care unit admission

    Get PDF
    Background: Sepsis commonly causes intensive care unit (ICU) mortality, yet early identification of adults with sepsis at risk of dying in the ICU remains a challenge. Objective: The aim of the study was to derive a mortality prediction model (MPM) to assist ICU clinicians and researchers as a clinical decision support tool for adults with sepsis within 4 h of ICU admission. Methods: A cohort study was performed using 500 consecutive admissions between 2014 and 2018 to an Australian tertiary ICU, who were aged ≥18 years and had sepsis. A total of 106 independent variables were assessed against ICU episode-of-care mortality. Multivariable backward stepwise logistic regression derived an MPM, which was assessed on discrimination, calibration, fit, sensitivity, specificity, and predictive values and bootstrapped. Results: The average cohort age was 58 years, the Acute Physiology and Chronic Health Evaluation III-j severity score was 72, and the case fatality rate was 12%. The 4-Hour Cairns Sepsis Model (CSM-4) consists of age, history of renal disease, number of vasopressors, Glasgow Coma Scale, lactate, bicarbonate, aspartate aminotransferase, lactate dehydrogenase, albumin, and magnesium with an area under the receiver operating characteristic curve of 0.90 (95% confidence interval = 0.84–0.95, p < 0.00001), a Nagelkerke R2 of 0.51, specificity of 0.94, a negative predictive value of 0.98, and almost identical odds ratios during bootstrapping. The CSM-4 outperformed existing MPMs tested on our data set. The CSM-4 also performed similar to existing MPMs in their derivation papers whilst using fewer, routinely collected, and inexpensive variables. Conclusions: The CSM-4 is a newly derived MPM for adults with sepsis at ICU admission. It displays excellent discrimination, calibration, fit, specificity, negative predictive value, and bootstrapping values whilst being easy to use and inexpensive. External validation is required
    corecore