6,421 research outputs found

    A systematic review of the prediction of hospital length of stay:Towards a unified framework

    Get PDF
    Hospital length of stay of patients is a crucial factor for the effective planning and management of hospital resources. There is considerable interest in predicting the LoS of patients in order to improve patient care, control hospital costs and increase service efficiency. This paper presents an extensive review of the literature, examining the approaches employed for the prediction of LoS in terms of their merits and shortcomings. In order to address some of these problems, a unified framework is proposed to better generalise the approaches that are being used to predict length of stay. This includes the investigation of the types of routinely collected data used in the problem as well as recommendations to ensure robust and meaningful knowledge modelling. This unified common framework enables the direct comparison of results between length of stay prediction approaches and will ensure that such approaches can be used across several hospital environments. A literature search was conducted in PubMed, Google Scholar and Web of Science from 1970 until 2019 to identify LoS surveys which review the literature. 32 Surveys were identified, from these 32 surveys, 220 papers were manually identified to be relevant to LoS prediction. After removing duplicates, and exploring the reference list of studies included for review, 93 studies remained. Despite the continuing efforts to predict and reduce the LoS of patients, current research in this domain remains ad-hoc; as such, the model tuning and data preprocessing steps are too specific and result in a large proportion of the current prediction mechanisms being restricted to the hospital that they were employed in. Adopting a unified framework for the prediction of LoS could yield a more reliable estimate of the LoS as a unified framework enables the direct comparison of length of stay methods. Additional research is also required to explore novel methods such as fuzzy systems which could build upon the success of current models as well as further exploration of black-box approaches and model interpretability

    Predicting length of stay across hospital departments

    Get PDF
    The length of hospital stay and its implications have a significant economic and human impact. As a consequence, the prediction of that key parameter has been subject to previous research in recent years. Most previous work has analysed length of stay in particular hospital departments within specific study groups, which has resulted in successful prediction rates, but only occasionally reporting predictive patterns. In this work we report a predictive model for length of stay (LOS) together with a study of trends and patterns that support a better understanding on how LOS varies across different hospital departments and specialties. We also analyse in which hospital departments the prediction of LOS from patient data is more insightful. After estimating predictions rates, several patterns were found; those patterns allowed, for instance, to determine how to increase prediction accuracy in women admitted to the emergency room for enteritis problems. Overall, concerning these recognised patterns, the results are up to 21.61% better than the results with baseline machine learning algorithms in terms of error rate calculation, and up to 23.83% in terms of success rate in the number of predicted which is useful to guide the decision on where to focus attention in predicting LOS

    Predicting Factors of Re-Hospitalization After Medically Managed Intensive Inpatient Services in Opioid Use Disorder

    Get PDF
    IntroductionOpioid use disorder has continued to rise in prevalence across the United States, with an estimated 2.5 million Americans ailing from the condition (NIDA, 2020). Medically managed detoxification incurs substantial costs and, when used independently, may not be effective in preventing relapse (Kosten & Baxter, 2019). While numerous studies have focused on predicting the factors of developing opioid use disorder, few have identified predictors of readmission to medically managed withdrawal at an inpatient level of care. Utilizing a high-fidelity dataset from a large multi-site behavioral health hospital, these predictors are explored. MethodsPatients diagnosed with Opioid Use Disorder and hospitalized in the inpatient level of care were analyzed to identify readmission predictors. Factors including patient demographics, patient-reported outcome measures, and post-discharge treatment interventions were included. Patients re-hospitalized to the inpatient level of care were binary labeled in the dataset, and various machine learning algorithms were tested, including machine learning techniques. Methods include random forest, gradient boosting, and deep learning techniques. Evaluation statistics include specificity, accuracy, precision, and Matthew\u27s Coefficient. ResultsOverall, there was a wide variation if correctly predicting the class of patients that would readmit to a medically managed level of inpatient detoxification. Out of the six models evaluated, three of the six did not converge, thus not producing a viable feature ranking. However, of the other three models that did converge, the deep learning model produced almost perfect classification, producing an accuracy of .98. AdaBoost and the logistic regression model produced an accuracy of .97 and .61, respectively. Each of these models produced a similar set of features that were important to predicting which patient profile would readmit to medically managed inpatient detoxification. ConclusionsThe results indicate that overall reduction in the Quick Inventory of Depressive Symptomology, discharge disposition, age, length of stay, and a patient\u27s total number of diagnoses were important features at predicting readmission. Additionally, deep learning algorithms vastly outperformed other machine learning algorithms

    Applications of artificial intelligence to improve patient flow on mental health inpatient units - Narrative literature review

    Get PDF
    Background: Despite a growing body of research into both Artificial intelligence and mental health inpatient flow issues, few studies adequately combine the two. This review summarises findings in the fields of AI in psychiatry and patient flow from the past 5 years, finds links and identifies gaps for future research. Methods: The OVID database was used to access Embase and Medline. Top journals such as JAMA, Nature and The Lancet were screened for other relevant studies. Selection bias was limited by strict inclusion and exclusion criteria. Research: 3,675 papers were identified in March 2020, of which a limited number focused on AI for mental health unit patient flow. After initial screening, 323 were selected and 83 were subsequently analysed. The literature review revealed a wide range of applications with three main themes: diagnosis (33%), prognosis (39%) and treatment (28%). The main themes that emerged from AI in patient flow studies were: readmissions (41%), resource allocation (44%) and limitations (91%). The review extrapolates those solutions and suggests how they could potentially improve patient flow on mental health units, along with challenges and limitations they could face. Conclusion: Research widely addresses potential uses of AI in mental health, with some focused on its applicability in psychiatric inpatients units, however research rarely discusses improvements in patient flow. Studies investigated various uses of AI to improve patient flow across specialities. This review highlights a gap in research and the unique research opportunity it presents

    Mining Themes in Clinical Notes to Identify Phenotypes and to Predict Length of Stay in Patients admitted with Heart Failure

    Get PDF
    Heart failure is a syndrome which occurs when the heart is not able to pump blood and oxygen to support other organs in the body. Identifying the underlying themes in the diagnostic codes and procedure reports of patients admitted for heart failure could reveal the clinical phenotypes associated with heart failure and to group patients based on their similar characteristics which could also help in predicting patient outcomes like length of stay. These clinical phenotypes usually have a probabilistic latent structure and hence, as there has been no previous work on identifying phenotypes in clinical notes of heart failure patients using a probabilistic framework and to predict length of stay of these patients using data-driven artificial intelligence-based methods, we apply natural language processing technique, topic modeling, to identify the themes present in diagnostic codes and in procedure reports of 1,200 patients admitted for heart failure at the University of Illinois Hospital and Health Sciences System (UI Health). Topic modeling identified twelve themes each in diagnostic codes and procedure reports which revealed information about different phenotypes related to various perspectives about heart failure, to study patients\u27 profiles and to discover new relationships among medical concepts. Each theme had a set of keywords and each clinical note was labeled with two themes - one corresponding to its diagnostic code and the other corresponding to its procedure reports along with their percentage contribution. We used these themes and their percentage contribution to predict length of stay. We found that the themes discovered in diagnostic codes and procedure reports using topic modeling together were able to predict length of stay of the patients with an accuracy of 61.1% and an Area under the Receiver Operating Characteristic Curve (ROC AUC) value of 0.828

    Data Mining in Neurology

    Get PDF

    Deep Learning for Predicting Non-attendance in Hospital Outpatient Appointments

    Get PDF
    The hospital outpatient non-attendance imposes huge financial burden on hospitals every year. The non- attendance issue roots in multiple diverse reasons which makes the problem space particularly complicated and undiscovered. The aim of this research is to build an advanced predictive model for non-attendance considering whole spectrum of factors and their complexities from big hospital data. We proposed a novel non-attendance prediction model based on deep neural networks. The proposed method is based on sparse stacked denoising autoencoders (SSDAEs). Different with exiting deep learning applications in hospital data which have separated data reconstruction and prediction phases, our model integrated both phases aiming to have higher performance than divided- classification model in predicting tasks from EPR. The proposed method is compared with some well-known machine learning classifiers and representative research works for non-attendance prediction. The evaluation results reveal that the proposed deep approach drastically outperforms other methods in practice
    corecore