7,563 research outputs found

    Exact and efficient top-K inference for multi-target prediction by querying separable linear relational models

    Get PDF
    Many complex multi-target prediction problems that concern large target spaces are characterised by a need for efficient prediction strategies that avoid the computation of predictions for all targets explicitly. Examples of such problems emerge in several subfields of machine learning, such as collaborative filtering, multi-label classification, dyadic prediction and biological network inference. In this article we analyse efficient and exact algorithms for computing the top-KK predictions in the above problem settings, using a general class of models that we refer to as separable linear relational models. We show how to use those inference algorithms, which are modifications of well-known information retrieval methods, in a variety of machine learning settings. Furthermore, we study the possibility of scoring items incompletely, while still retaining an exact top-K retrieval. Experimental results in several application domains reveal that the so-called threshold algorithm is very scalable, performing often many orders of magnitude more efficiently than the naive approach

    Continuous Representation of Location for Geolocation and Lexical Dialectology using Mixture Density Networks

    Full text link
    We propose a method for embedding two-dimensional locations in a continuous vector space using a neural network-based model incorporating mixtures of Gaussian distributions, presenting two model variants for text-based geolocation and lexical dialectology. Evaluated over Twitter data, the proposed model outperforms conventional regression-based geolocation and provides a better estimate of uncertainty. We also show the effectiveness of the representation for predicting words from location in lexical dialectology, and evaluate it using the DARE dataset.Comment: Conference on Empirical Methods in Natural Language Processing (EMNLP 2017) September 2017, Copenhagen, Denmar

    New Paradigms for Active Learning

    Get PDF
    In traditional active learning, learning algorithms (or learners) mainly focus on the performance of the final model built and the total number of queries needed for learning a good model. However, in many real-world applications, active learners have to focus on the learning process for achieving finer goals, such as minimizing the number of mistakes in predicting unlabeled examples. These learning goals are common and important in real-world applications. For example, in direct marketing, a sales agent (learner) has to focus on the process of selecting customers to approach, and tries to make correct predictions (i.e., fewer mistakes) on the customers who will buy the product. However, traditional active learning algorithms cannot achieve the finer learning goals due to the different focuses. In this thesis, we study how to control the learning process in active learning such that those goals can be accomplished. According to various learning tasks and goals, we address four new active paradigms as follows. The first paradigm is learning actively and conservatively. Under this paradigm, the learner actively selects and predicts the most certain example (thus, conservatively) iteratively during the learning process. The goal of this paradigm is to minimize the number of mistakes in predicting unlabeled examples during active learning. Intuitively the conservative strategy is less likely to make mistakes, i.e., more likely to achieve the learning goal. We apply this new learning strategy in an educational software, as well as direct marketing. The second paradigm is learning actively and aggressively. Under this paradigm, unlabeled examples and multiple oracles are available. The learner actively selects the best multiple oracles to label the most uncertain example (thus, aggressively) iteratively during the learning process. The learning goal is to learn a good model with guaranteed label quality. The third paradigm is learning actively with conservative-aggressive tradeoff. Under this learning paradigm, firstly, unlabeled examples are available and learners are allowed to select examples actively to learn. Secondly, to obtain the labels, two actions can be considered: querying oracles and making predictions. Lastly, cost has to be paid for querying oracles or for making wrong predictions. The tradeoff between the two actions is necessary for achieving the learning goal: minimizing the total cost for obtaining the labels. The last paradigm is learning actively with minimal/maximal effort. Under this paradigm, the labels of the examples are all provided and learners are allowed to select examples actively to learn. The learning goal is to control the learning process by selecting examples actively such that the learning can be accomplished with minimal effort or a good model can be built fast with maximal effort. For each of the four learning paradigms, we propose effective learning algorithms accordingly and demonstrate empirically that related learning problems in real applications can be solved well and the learning goals can be accomplished. In summary, this thesis focuses on controlling the learning process to achieve fine goals in active learning. According to various real application tasks, we propose four novel learning paradigms, and for each paradigm we propose efficient learning algorithms to solve the learning problems. The experimental results show that our learning algorithms outperform other state-of-the-art learning algorithms

    Analyzing the Language of Food on Social Media

    Full text link
    We investigate the predictive power behind the language of food on social media. We collect a corpus of over three million food-related posts from Twitter and demonstrate that many latent population characteristics can be directly predicted from this data: overweight rate, diabetes rate, political leaning, and home geographical location of authors. For all tasks, our language-based models significantly outperform the majority-class baselines. Performance is further improved with more complex natural language processing, such as topic modeling. We analyze which textual features have most predictive power for these datasets, providing insight into the connections between the language of food, geographic locale, and community characteristics. Lastly, we design and implement an online system for real-time query and visualization of the dataset. Visualization tools, such as geo-referenced heatmaps, semantics-preserving wordclouds and temporal histograms, allow us to discover more complex, global patterns mirrored in the language of food.Comment: An extended abstract of this paper will appear in IEEE Big Data 201

    Determination of a predictive cleavage motif for eluted major histocompatibility complex class II ligands

    Get PDF
    CD4+ T cells have a major role in regulating immune responses. They are activated by recognition of peptides mostly generated from exogenous antigens through the major histocompatibility complex (MHC) class II pathway. Identification of epitopes is important and computational prediction of epitopes is used widely to save time and resources. Although there are algorithms to predict binding affinity of peptides to MHC II molecules, no accurate methods exist to predict which ligands are generated as a result of natural antigen processing. We utilized a dataset of around 14,000 naturally processed ligands identified by mass spectrometry of peptides eluted from MHC class II expressing cells to investigate the existence of sequence signatures potentially related to the cleavage mechanisms that liberate the presented peptides from their source antigens. This analysis revealed preferred amino acids surrounding both N- and C-terminuses of ligands, indicating sequence-specific cleavage preferences. We used these cleavage motifs to develop a method for predicting naturally processed MHC II ligands, and validated that it had predictive power to identify ligands from independent studies. We further confirmed that prediction of ligands based on cleavage motifs could be combined with predictions of MHC binding, and that the combined prediction had superior performance. However, when attempting to predict CD4+ T cell epitopes, either alone or in combination with MHC binding predictions, predictions based on the cleavage motifs did not show predictive power. Given that peptides identified as epitopes based on CD4+ T cell reactivity typically do not have well-defined termini, it is possible that motifs are present but outside of the mapped epitope. Our attempts to take that into account computationally did not show any sign of an increased presence of cleavage motifs around well-characterized CD4+ T cell epitopes. While it is possible that our attempts to translate the cleavage motifs in MHC II ligand elution data into T cell epitope predictions were suboptimal, other possible explanations are that the cleavage signal is too diluted to be detected, or that elution data are enriched for ligands generated through an antigen processing and presentation pathway that is less frequently utilized for T cell epitopes.Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Karosiene, Edita. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Dhanda, Sandeep Kumar. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Jurtz, Vanessa. Technical University of Denmark; DinamarcaFil: Edwards, Lindy. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; DinamarcaFil: Sette, Alessandro. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos. University of California at San Diego; Estados Unido
    corecore