5 research outputs found

    Situation-aware Edge Computing

    Get PDF
    Future wireless networks must cope with an increasing amount of data that needs to be transmitted to or from mobile devices. Furthermore, novel applications, e.g., augmented reality games or autonomous driving, require low latency and high bandwidth at the same time. To address these challenges, the paradigm of edge computing has been proposed. It brings computing closer to the users and takes advantage of the capabilities of telecommunication infrastructures, e.g., cellular base stations or wireless access points, but also of end user devices such as smartphones, wearables, and embedded systems. However, edge computing introduces its own challenges, e.g., economic and business-related questions or device mobility. Being aware of the current situation, i.e., the domain-specific interpretation of environmental information, makes it possible to develop approaches targeting these challenges. In this thesis, the novel concept of situation-aware edge computing is presented. It is divided into three areas: situation-aware infrastructure edge computing, situation-aware device edge computing, and situation-aware embedded edge computing. Therefore, the concepts of situation and situation-awareness are introduced. Furthermore, challenges are identified for each area, and corresponding solutions are presented. In the area of situation-aware infrastructure edge computing, economic and business-related challenges are addressed, since companies offering services and infrastructure edge computing facilities have to find agreements regarding the prices for allowing others to use them. In the area of situation-aware device edge computing, the main challenge is to find suitable nodes that can execute a service and to predict a node’s connection in the near future. Finally, to enable situation-aware embedded edge computing, two novel programming and data analysis approaches are presented that allow programmers to develop situation-aware applications. To show the feasibility, applicability, and importance of situation-aware edge computing, two case studies are presented. The first case study shows how situation-aware edge computing can provide services for emergency response applications, while the second case study presents an approach where network transitions can be implemented in a situation-aware manner

    Howdah: Load Profiling via In-Band Flow Classification and P4

    Get PDF
    The challenges of managing datacenter traffic increase with the complexity and variety of new Internet and Web applications. Efficient network management systems are often required to thwart delays and minimize failures. In this regard, it appears helpful to identify in advance the different classes of flows that (co)exist in the network, characterizing them into different types according to the different latency/bandwidth requirements. In this paper, we propose Howdah, a traffic identification and profiling mechanism that uses Machine Learning and a congestion-aware forwarding strategy to offer adaptation to different traffic classes with the support of programmable data-planes. With Howdah, sender and gateway elements inject in-band traffic information obtained using supervised learning. When a switch or a router receives a packet, it exploits such host-based traffic classification to adapt to a desirable traffic profile, for example, balancing the load. We compare our solutions against recent traffic engineering solutions and show the efficacy of cooperation between host traffic classification and P4-based switch forwarding policies, reducing packet transmission time in datacenter scenarios

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking

    Stochastische Analyse und lernbasierte Algorithmen zur Ressourcenbereitstellung in optischen Netzwerken

    Get PDF
    The unprecedented growth in Internet traffic has driven the innovations in provisioning of optical resources as per the need of bandwidth demands such that the resource utilization and spectrum efficiency could be maximized. With the advent of the next generation flexible optical transponders and switches, the flexible-grid-based elastic optical network (EON) is foreseen as an alternative to the widely deployed fixed-grid-based wavelength division multiplexing networks. At the same time, the flexible resource provisioning also raises new challenges for EONs. One such challenge is the spectrum fragmentation. As network traffic varies over time, spectrum gets fragmented due to the setting up and tearing down of non-uniform bandwidth requests over aligned (i.e., continuous) and adjacent (i.e., contiguous) spectrum slices, which leads to a non-optimal spectrum allocation, and generally results in higher blocking probability and lower spectrum utilization in EONs. To address this issue, the allocation and reallocation of optical resources are required to be modeled accurately, and managed efficiently and intelligently. The modeling of routing and spectrum allocation in EONs with the spectrum contiguity and spectrum continuity constraints is well-investigated, but existing models do not consider the fragmentation issue resulted by these constraints and non-uniform bandwidth demands. This thesis addresses this issue and considers both the constraints to computing exact blocking probabilities in EONs with and without spectrum conversion, and with spectrum reallocation (known as defragmentation) for the first time using the Markovian approach. As the exact network models are not scalable with respect to the network size and capacity, this thesis proposes load-independent and load-dependent approximate models to compute approximate blocking probabilities in EONs. Results show that the connection blocking due to fragmentation can be reduced by using a spectrum conversion or a defragmentation approach, but it can not be eliminated in a mesh network topology. This thesis also deals with the important network resource provisioning task in EONs. To this end, it first presents algorithmic solutions to efficiently allocate and reallocate spectrum resources using the fragmentation factor along spectral, time, and spatial dimensions. Furthermore, this thesis highlights the role of machine learning techniques in alleviating issues in static provisioning of optical resources, and presents two use-cases: handling time-varying traffic in optical data center networks, and reducing energy consumption and allocating spectrum proportionately to traffic classes in fiber-wireless networks.Die flexible Nutzung des Spektrums bringt in Elastischen Optischen Netze (EON) neue Herausforderungen mit sich, z.B., die Fragmentierung des Spektrums. Die Fragmentierung entsteht dadurch, dass die Netzwerkverkehrslast sich im Laufe der Zeit ändert und so wird das Spektrum aufgrund des Verbindungsaufbaus und -abbaus fragmentiert. Das für eine Verbindung notwendige Spektrum wird durch aufeinander folgende (kontinuierliche) und benachbarte (zusammenhängende) Spektrumsabschnitte (Slots) gebildet. Dies führt nach den zahlreichen Reservierungen und Freisetzungen des Spektrums zu einer nicht optimalen Zuordnung, die in einer höheren Blockierungs-wahrscheinlichkeit der neuen Verbindungsanfragen und einer geringeren Auslastung von EONs resultiert. Um dieses Problem zu lösen, müssen die Zuweisung und Neuzuordnung des Spektrums in EONs genau modelliert und effizient sowie intelligent verwaltet werden. Diese Arbeit beschäftigt sich mit dem Fragmentierungsproblem und berücksichtigt dabei die beiden Einschränkungen: Kontiguität und Kontinuität. Unter diesen Annahmen wurden analytische Modelle zur Berechnung einer exakten Blockierungswahrscheinlichkeit in EONs mit und ohne Spektrumskonvertierung erarbeitet. Außerdem umfasst diese Arbeit eine Analyse der Blockierungswahrscheinlichkeit im Falle einer Neuzuordnung des Sprektrums (Defragmentierung). Diese Blockierungsanalyse wird zum ersten Mal mit Hilfe der Markov-Modelle durchgeführt. Da die exakten analytischen Modelle hinsichtlich der Netzwerkgröße und -kapazität nicht skalierbar sind, werden in dieser Dissertation verkehrslastunabhängige und verkehrslastabhängige Approximationsmodelle vorgestellt. Diese Modelle bieten eine Näherung der Blockierungswahrscheinlichkeiten in EONs. Die Ergebnisse zeigen, dass die Blockierungswahrscheinlichkeit einer Verbindung aufgrund von einer Fragmentierung des Spektrums durch die Verwendung einer Spektrumkonvertierung oder eines Defragmentierungsverfahrens verringert werden kann. Eine effiziente Bereitstellung der optischen Netzwerkressourcen ist eine wichtige Aufgabe von EONs. Deswegen befasst sich diese Arbeit mit algorithmischen Lösungen, die Spektrumressource mithilfe des Fragmentierungsfaktors von Spektral-, Zeit- und räumlichen Dimension effizient zuweisen und neu zuordnen. Darüber hinaus wird die Rolle des maschinellen Lernens (ML) für eine verbesserte Bereitstellung der optischen Ressourcen untersucht und das ML basierte Verfahren mit der statischen Ressourcenzuweisung verglichen. Dabei werden zwei Anwendungsbeispiele vorgestellt und analysiert: der Umgang mit einer zeitveränderlichen Verkehrslast in optischen Rechenzentrumsnetzen, und eine Verringerung des Energieverbrauchs und die Zuweisung des Spektrums proportional zu Verkehrsklassen in kombinierten Glasfaser-Funknetzwerken

    The University of California: Creating, Nurturing, and Maintaining Academic Quality in a Public University Setting

    Get PDF
    corecore