3,254 research outputs found

    Predicting Future Instance Segmentation by Forecasting Convolutional Features

    Get PDF
    Anticipating future events is an important prerequisite towards intelligent behavior. Video forecasting has been studied as a proxy task towards this goal. Recent work has shown that to predict semantic segmentation of future frames, forecasting at the semantic level is more effective than forecasting RGB frames and then segmenting these. In this paper we consider the more challenging problem of future instance segmentation, which additionally segments out individual objects. To deal with a varying number of output labels per image, we develop a predictive model in the space of fixed-sized convolutional features of the Mask R-CNN instance segmentation model. We apply the "detection head'" of Mask R-CNN on the predicted features to produce the instance segmentation of future frames. Experiments show that this approach significantly improves over strong baselines based on optical flow and repurposed instance segmentation architectures

    Predicting Deeper into the Future of Semantic Segmentation

    Get PDF
    The ability to predict and therefore to anticipate the future is an important attribute of intelligence. It is also of utmost importance in real-time systems, e.g. in robotics or autonomous driving, which depend on visual scene understanding for decision making. While prediction of the raw RGB pixel values in future video frames has been studied in previous work, here we introduce the novel task of predicting semantic segmentations of future frames. Given a sequence of video frames, our goal is to predict segmentation maps of not yet observed video frames that lie up to a second or further in the future. We develop an autoregressive convolutional neural network that learns to iteratively generate multiple frames. Our results on the Cityscapes dataset show that directly predicting future segmentations is substantially better than predicting and then segmenting future RGB frames. Prediction results up to half a second in the future are visually convincing and are much more accurate than those of a baseline based on warping semantic segmentations using optical flow.Comment: Accepted to ICCV 2017. Supplementary material available on the authors' webpage

    Forecasting Hands and Objects in Future Frames

    Full text link
    This paper presents an approach to forecast future presence and location of human hands and objects. Given an image frame, the goal is to predict what objects will appear in the future frame (e.g., 5 seconds later) and where they will be located at, even when they are not visible in the current frame. The key idea is that (1) an intermediate representation of a convolutional object recognition model abstracts scene information in its frame and that (2) we can predict (i.e., regress) such representations corresponding to the future frames based on that of the current frame. We design a new two-stream convolutional neural network (CNN) architecture for videos by extending the state-of-the-art convolutional object detection network, and present a new fully convolutional regression network for predicting future scene representations. Our experiments confirm that combining the regressed future representation with our detection network allows reliable estimation of future hands and objects in videos. We obtain much higher accuracy compared to the state-of-the-art future object presence forecast method on a public dataset

    FLODCAST: Flow and Depth Forecasting via Multimodal Recurrent Architectures

    Full text link
    Forecasting motion and spatial positions of objects is of fundamental importance, especially in safety-critical settings such as autonomous driving. In this work, we address the issue by forecasting two different modalities that carry complementary information, namely optical flow and depth. To this end we propose FLODCAST a flow and depth forecasting model that leverages a multitask recurrent architecture, trained to jointly forecast both modalities at once. We stress the importance of training using flows and depth maps together, demonstrating that both tasks improve when the model is informed of the other modality. We train the proposed model to also perform predictions for several timesteps in the future. This provides better supervision and leads to more precise predictions, retaining the capability of the model to yield outputs autoregressively for any future time horizon. We test our model on the challenging Cityscapes dataset, obtaining state of the art results for both flow and depth forecasting. Thanks to the high quality of the generated flows, we also report benefits on the downstream task of segmentation forecasting, injecting our predictions in a flow-based mask-warping framework.Comment: Submitted to Pattern Recognitio
    • …
    corecore