2,402 research outputs found

    Spatial mapping of the provenance of storm dust: Application of data mining and ensemble modelling

    Get PDF
    Spatial modelling of storm dust provenance is essential to mitigate its on-site and off-site effects in the arid and semi-arid environments of the world. Therefore, the main aim of this study was to apply eight data mining algorithms including random forest (RF), support vector machine (SVM), bayesian additive regression trees (BART), radial basis function (RBF), extreme gradient boosting (XGBoost), regression tree analysis (RTA), Cubist model and boosted regression trees (BRT) and an ensemble modelling (EM) approach for generating spatial maps of dust provenance in the Khuzestan province, a main region with active sources for producing dust in southwestern Iran. This study is the first attempt at predicting storm dust provenance by applying individual data mining models and ensemble modelling. We identified and mapped in a geographic information system (GIS), 12 potential effective factors for dust emissions comprising two for climate (wind speed, precipitation), five soil characteristics (texture, bulk density, Ec, organic matter (OM), available water capacity (AWC)), a normalized difference vegetation index (NDVI), land use, geology, a digital elevation model (DEM) and land type, and used a mean decrease accuracy measure (MDAM) to determine the corresponding importance scores (IS). A multicollinearity test (including the variance inflation factor (VIF) and tolerance coefficient (TC)) was applied to assess relationships between the effective factors, and an existing map of dust provenance was randomly categorized into two groups consisting of training (70%) and validation (30%) data. The individual data mining models were validated using the area under the curve (AUC). Based on the TC and VIF results, no collinearity was detected among the 12 effective factors for dust emissions. The prediction accuracies of the eight data mining models and an EM assessed by the AUC were as follows: EM (with AUC=99.8%) > XGBoost>RBF > Cubist>RF > BART>SVM > BRT > RTA (with AUC=79.1%). Among all models, the EM was found to provide the highest accuracy for predicting storm dust provenance. Using the EM, areas classified as being low, moderate, high and very high susceptibility for storm dust provenance comprised 36, 13, 23 and 28% of the total mapped area, respectively. Based on MDAM results, the highest and lowest IS were obtained for the wind speed (IS=23) and geology (IS=6.5) factors, respectively. Overall, the modelling techniques used in this research are helpful for predicting storm dust provenance and thereby targeting mitigation. Therefore, we recommend applying data mining EM approaches to the spatial mapping of storm dust provenance worldwide

    Ensemble Consensus-based Representation Deep Reinforcement Learning for Hybrid FSO/RF Communication Systems

    Full text link
    Hybrid FSO/RF system requires an efficient FSO and RF link switching mechanism to improve the system capacity by realizing the complementary benefits of both the links. The dynamics of network conditions, such as fog, dust, and sand storms compound the link switching problem and control complexity. To address this problem, we initiate the study of deep reinforcement learning (DRL) for link switching of hybrid FSO/RF systems. Specifically, in this work, we focus on actor-critic called Actor/Critic-FSO/RF and Deep-Q network (DQN) called DQN-FSO/RF for FSO/RF link switching under atmospheric turbulences. To formulate the problem, we define the state, action, and reward function of a hybrid FSO/RF system. DQN-FSO/RF frequently updates the deployed policy that interacts with the environment in a hybrid FSO/RF system, resulting in high switching costs. To overcome this, we lift this problem to ensemble consensus-based representation learning for deep reinforcement called DQNEnsemble-FSO/RF. The proposed novel DQNEnsemble-FSO/RF DRL approach uses consensus learned features representations based on an ensemble of asynchronous threads to update the deployed policy. Experimental results corroborate that the proposed DQNEnsemble-FSO/RF's consensus-learned features switching achieves better performance than Actor/Critic-FSO/RF, DQN-FSO/RF, and MyOpic for FSO/RF link switching while keeping the switching cost significantly low.Comment: Number of pages 16 and number of figures 15, Unpublished work, accepte

    Study of the Wind Speed Forecasting Applying Computational Intelligence

    Get PDF
    The conventional sources of energy such as oil, natural gas, coal, or nuclear are finite and generate environmental pollution. Alternatively, renewable energy source like wind is clean and abundantly available in nature. Wind power has a huge potential of becoming a major source of renewable energy for this modern world. It is a clean, emission-free power generation technology. Wind energy has been experiencing very rapid growth in Brazil and in Uruguay; therefore, it’s a promising industry in these countries. Thus, this rapid expansion can bring several regional benefits and contribute to sustainable development, especially in places with low economic development. Therefore, the scope of this chapter is to estimate short-term wind speed forecasting applying computational intelligence, by recurrent neural networks (RNN), using anemometers data collected by an anemometric tower at a height of 100.0 m in Brazil (tropical region) and 101.8 m in Uruguay (subtropical region), both Latin American countries. The results of this study are compared with wind speed prediction results from the literature. In one of the cases investigated, this study proved to be more appropriate when analyzing evaluation metrics (error and regression) of the prediction results obtained by the proposed model

    Retrospective Geospatial Modeling of PM10 Exposures from Open Burning at Joint Base Balad, Iraq

    Get PDF
    Predicting, determining, and linking theater-related source-specific exposures to health effects has proven difficult. The purpose of this research is to delineate retrospective exposure zones using spatially interpolated particulate air sampling point data from Joint Base Balad, create burn pit exposure isopleths from dispersion model outputs, and merge into a combined exposure model in GIS. Interpolated monitoring results and dispersion modeled results were combined to compare modeled exposures across base. Burn pit contribution to total PM10 was also modeled. The combined dispersion and interpolation map showed elevated concentrations within a 1 kilometer buffer of the burn pit. Buildings within this area were identified by geoprocessing. The east side of the base receives greater burn pit-specific PM10, compared to the west side. The west side showed high ambient PM10 from monitoring results, but it is unclear whether this was due to spatial or temporal effects. High temporal variability highlights the need for temporally representative sampling across the geographical area throughout the year. It was shown that source-specific individual exposure can be estimated with dispersion model isopleth maps and individual time-activity patterns. All modeling performed can all be refined with improved estimates of emission rates

    The determination of ground granulated concrete compressive strength based machine learning models

    Get PDF
    The advancement of machine learning (ML) models has received remarkable attention by several science and engineering applications. Within the material engineering, ML models are usually utilized for building an expert system for supporting material design and attaining an optimal formulation material sustainability and maintenance. The current study is conducted on the based of the utilization of ML models for modeling compressive strength (Cs) of ground granulated blast furnace slag concrete (GGBFSC). Random Forest (RF) model is developed for this purpose. The predictive model is constructed based on multiple correlated properties for the concrete material including coarse aggregate (CA), curing temperature (T), GGBFSC to total binder ratio (GGBFSC/B), water to binder ratio (w/b), water content (W), fine aggregate (FA), superplasticizer (SP). A total of 268 experimental dataset are gather form the open-source previous published researches, are used to build the predictive model. For the verification purpose, a predominant ML model called support vector machine (SVM) is developed. The efficiency of the proposed predictive and the benchmark models is evaluated using statistical formulations and graphical presentation. Based on the attained prediction accuracy, RF model demonstrated an excellent performance for predicting the Cs using limited input parameters. Overall, the proposed methodology showed an exceptional predictive model that can be utilized for modeling compressive strength of GGBFSC

    An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting Using Deep Learning

    Full text link
    For short-term solar irradiance forecasting, the traditional point forecasting methods are rendered less useful due to the non-stationary characteristic of solar power. The amount of operating reserves required to maintain reliable operation of the electric grid rises due to the variability of solar energy. The higher the uncertainty in the generation, the greater the operating-reserve requirements, which translates to an increased cost of operation. In this research work, we propose a unified architecture for multi-time-scale predictions for intra-day solar irradiance forecasting using recurrent neural networks (RNN) and long-short-term memory networks (LSTMs). This paper also lays out a framework for extending this modeling approach to intra-hour forecasting horizons thus, making it a multi-time-horizon forecasting approach, capable of predicting intra-hour as well as intra-day solar irradiance. We develop an end-to-end pipeline to effectuate the proposed architecture. The performance of the prediction model is tested and validated by the methodical implementation. The robustness of the approach is demonstrated with case studies conducted for geographically scattered sites across the United States. The predictions demonstrate that our proposed unified architecture-based approach is effective for multi-time-scale solar forecasts and achieves a lower root-mean-square prediction error when benchmarked against the best-performing methods documented in the literature that use separate models for each time-scale during the day. Our proposed method results in a 71.5% reduction in the mean RMSE averaged across all the test sites compared to the ML-based best-performing method reported in the literature. Additionally, the proposed method enables multi-time-horizon forecasts with real-time inputs, which have a significant potential for practical industry applications in the evolving grid.Comment: 19 pages, 12 figures, 3 tables, under review for journal submissio

    A newly developed integrative bio-inspired artificial intelligence model for wind speed prediction

    Get PDF
    Accurate wind speed (WS) modelling is crucial for optimal utilization of wind energy. NumericalWeather Prediction (NWP) techniques, generally used for WS modelling are not only less cost-effective but also poor in predicting in shorter time horizon. Novel WS prediction models based on the multivariate empirical mode decomposition (MEMD), random forest (RF) and Kernel Ridge Regression (KRR) were constructed in this paper better accuracy in WS prediction. Particle swarm optimization algorithm (PSO) was employed to optimize the parameters of the hybridized MEMD model with RF (MEMD-PSO-RF) and KRR (MEMD-PSO-KRR) models. Obtained results were compared to those of the standalone RF and KRR models. The proposed methodology is applied for monthly WS prediction at meteorological stations of Iraq, Baghdad (Station1) and Mosul (Station2) for the period 1977-2013. Results showed higher accuracy of MEMD-PSO-RF model in predicting WS at both stations with a correlation coefficient (r) of 0.972 and r D 0.971 during testing phase at Station1 and Station2, respectively. The MEMD-PSO-KRR was found as the second most accurate model followed by Standalone RF and KRR, but all showed a competitive performance to the MEMD-PSO-RF model. The outcomes of this work indicated that the MEMD-PSO-RF model has a remarkable performance in predicting WS and can be considered for practical applications
    corecore