3,750 research outputs found

    Refining the PoinTER “human firewall” pentesting framework

    Get PDF
    PurposePenetration tests have become a valuable tool in the cyber security defence strategy, in terms of detecting vulnerabilities. Although penetration testing has traditionally focused on technical aspects, the field has started to realise the importance of the human in the organisation, and the need to ensure that humans are resistant to cyber-attacks. To achieve this, some organisations “pentest” their employees, testing their resilience and ability to detect and repel human-targeted attacks. In a previous paper we reported on PoinTER (Prepare TEst Remediate), a human pentesting framework, tailored to the needs of SMEs. In this paper, we propose improvements to refine our framework. The improvements are based on a derived set of ethical principles that have been subjected to ethical scrutiny.MethodologyWe conducted a systematic literature review of academic research, a review of actual hacker techniques, industry recommendations and official body advice related to social engineering techniques. To meet our requirements to have an ethical human pentesting framework, we compiled a list of ethical principles from the research literature which we used to filter out techniques deemed unethical.FindingsDrawing on social engineering techniques from academic research, reported by the hacker community, industry recommendations and official body advice and subjecting each technique to ethical inspection, using a comprehensive list of ethical principles, we propose the refined GDPR compliant and privacy respecting PoinTER Framework. The list of ethical principles, we suggest, could also inform ethical technical pentests.OriginalityPrevious work has considered penetration testing humans, but few have produced a comprehensive framework such as PoinTER. PoinTER has been rigorously derived from multiple sources and ethically scrutinised through inspection, using a comprehensive list of ethical principles derived from the research literature

    Cyber Threat Intelligence based Holistic Risk Quantification and Management

    Get PDF

    Estimating Impact and Frequency of Risks to Safety and Mission Critical Systems Using CVSS

    Get PDF
    Many safety and mission critical systems depend on the correct and secure operation of both supportive and core software systems. E.g., both the safety of personnel and the effective execution of core missions on an oil platform depend on the correct recording storing, transfer and interpretation of data, such as that for the Logging While Drilling (LWD) and Measurement While Drilling (MWD) subsystems. Here, data is recorded on site, packaged and then transferred to an on-shore operational centre. Today, the data is transferred on dedicated communication channels to ensure a secure and safe transfer, free from deliberately and accidental faults. However, as the cost control is ever more important some of the transfer will be over remotely accessible infrastructure in the future. Thus, communication will be prone to known security vulnerabilities exploitable by outsiders. This paper presents a model that estimates risk level of known vulnerabilities as a combination of frequency and impact estimates derived from the Common Vulnerability Scoring System (CVSS). The model is implemented as a Bayesian Belief Network (BBN)

    Malware in the Future? Forecasting of Analyst Detection of Cyber Events

    Full text link
    There have been extensive efforts in government, academia, and industry to anticipate, forecast, and mitigate cyber attacks. A common approach is time-series forecasting of cyber attacks based on data from network telescopes, honeypots, and automated intrusion detection/prevention systems. This research has uncovered key insights such as systematicity in cyber attacks. Here, we propose an alternate perspective of this problem by performing forecasting of attacks that are analyst-detected and -verified occurrences of malware. We call these instances of malware cyber event data. Specifically, our dataset was analyst-detected incidents from a large operational Computer Security Service Provider (CSSP) for the U.S. Department of Defense, which rarely relies only on automated systems. Our data set consists of weekly counts of cyber events over approximately seven years. Since all cyber events were validated by analysts, our dataset is unlikely to have false positives which are often endemic in other sources of data. Further, the higher-quality data could be used for a number for resource allocation, estimation of security resources, and the development of effective risk-management strategies. We used a Bayesian State Space Model for forecasting and found that events one week ahead could be predicted. To quantify bursts, we used a Markov model. Our findings of systematicity in analyst-detected cyber attacks are consistent with previous work using other sources. The advanced information provided by a forecast may help with threat awareness by providing a probable value and range for future cyber events one week ahead. Other potential applications for cyber event forecasting include proactive allocation of resources and capabilities for cyber defense (e.g., analyst staffing and sensor configuration) in CSSPs. Enhanced threat awareness may improve cybersecurity.Comment: Revised version resubmitted to journa

    Algorithmic means of ensuring network security and websites: trends, models, future cases

    Get PDF
    The purpose of the study is to establish probable trends in the development of algorithmic means of network security and the protection of web resources in the future. The research methods used in this publication are a bibliometric analysis of 500 relevant publications, which allowed us to establish probable trends in the future development of the subject field. The study found that currently the most likely algorithmic means of network security and website protection that will be intensively developed in the future are blockchain technologies (to protect inter-resource contact), deep and machine learning (to analyze and detect attacks and digital anomalies), artificial intelligence and neural networks (to develop complex security algorithms), and predictive analysis (to prevent possible attacks and malicious data injections). At the same time, technological development makes it possible to identify alternative security tools, including quantum and post-quantum cryptography (which is possible due to the development of quantum computing), augmented reality (which is the next iteration of the development of the interface between machine-human interaction), biometric identification (which is the next iteration of authentication and recognition systems) and DevSecOps (which is a promising technology for the production of digital tools and systems that have a relatively lower level of vulnerability to known digital threats). The correlative impact of Industry 4.0 technologies and solutions on the studied aspects of the security sector of the World Wide Web has been established. The growth of the network of devices requires the improvement of security algorithms in the paradigm of Industry 4.0 technologies, which will allow more effective detection and prevention of cyberattacks and protection of user data
    • …
    corecore