5,026 research outputs found

    Digging Deeper into Egocentric Gaze Prediction

    Full text link
    This paper digs deeper into factors that influence egocentric gaze. Instead of training deep models for this purpose in a blind manner, we propose to inspect factors that contribute to gaze guidance during daily tasks. Bottom-up saliency and optical flow are assessed versus strong spatial prior baselines. Task-specific cues such as vanishing point, manipulation point, and hand regions are analyzed as representatives of top-down information. We also look into the contribution of these factors by investigating a simple recurrent neural model for ego-centric gaze prediction. First, deep features are extracted for all input video frames. Then, a gated recurrent unit is employed to integrate information over time and to predict the next fixation. We also propose an integrated model that combines the recurrent model with several top-down and bottom-up cues. Extensive experiments over multiple datasets reveal that (1) spatial biases are strong in egocentric videos, (2) bottom-up saliency models perform poorly in predicting gaze and underperform spatial biases, (3) deep features perform better compared to traditional features, (4) as opposed to hand regions, the manipulation point is a strong influential cue for gaze prediction, (5) combining the proposed recurrent model with bottom-up cues, vanishing points and, in particular, manipulation point results in the best gaze prediction accuracy over egocentric videos, (6) the knowledge transfer works best for cases where the tasks or sequences are similar, and (7) task and activity recognition can benefit from gaze prediction. Our findings suggest that (1) there should be more emphasis on hand-object interaction and (2) the egocentric vision community should consider larger datasets including diverse stimuli and more subjects.Comment: presented at WACV 201

    Classification of Alzheimers Disease with Deep Learning on Eye-tracking Data

    Full text link
    Existing research has shown the potential of classifying Alzheimers Disease (AD) from eye-tracking (ET) data with classifiers that rely on task-specific engineered features. In this paper, we investigate whether we can improve on existing results by using a Deep-Learning classifier trained end-to-end on raw ET data. This classifier (VTNet) uses a GRU and a CNN in parallel to leverage both visual (V) and temporal (T) representations of ET data and was previously used to detect user confusion while processing visual displays. A main challenge in applying VTNet to our target AD classification task is that the available ET data sequences are much longer than those used in the previous confusion detection task, pushing the limits of what is manageable by LSTM-based models. We discuss how we address this challenge and show that VTNet outperforms the state-of-the-art approaches in AD classification, providing encouraging evidence on the generality of this model to make predictions from ET data.Comment: ICMI 2023 long pape

    Learning recurrent representations for hierarchical behavior modeling

    Get PDF
    We propose a framework for detecting action patterns from motion sequences and modeling the sensory-motor relationship of animals, using a generative recurrent neural network. The network has a discriminative part (classifying actions) and a generative part (predicting motion), whose recurrent cells are laterally connected, allowing higher levels of the network to represent high level phenomena. We test our framework on two types of data, fruit fly behavior and online handwriting. Our results show that 1) taking advantage of unlabeled sequences, by predicting future motion, significantly improves action detection performance when training labels are scarce, 2) the network learns to represent high level phenomena such as writer identity and fly gender, without supervision, and 3) simulated motion trajectories, generated by treating motion prediction as input to the network, look realistic and may be used to qualitatively evaluate whether the model has learnt generative control rules

    LSTA: Long Short-Term Attention for Egocentric Action Recognition

    Get PDF
    Egocentric activity recognition is one of the most challenging tasks in video analysis. It requires a fine-grained discrimination of small objects and their manipulation. While some methods base on strong supervision and attention mechanisms, they are either annotation consuming or do not take spatio-temporal patterns into account. In this paper we propose LSTA as a mechanism to focus on features from spatial relevant parts while attention is being tracked smoothly across the video sequence. We demonstrate the effectiveness of LSTA on egocentric activity recognition with an end-to-end trainable two-stream architecture, achieving state of the art performance on four standard benchmarks.Comment: Accepted to CVPR 201
    • …
    corecore