96 research outputs found

    Fast intra prediction in the transform domain

    Get PDF
    In this paper, we present a fast intra prediction method based on separating the transformed coefficients. The prediction block can be obtained from the transformed and quantized neighboring block generating minimum distortion for each DC and AC coefficients independently. Two prediction methods are proposed, one is full block search prediction (FBSP) and the other is edge based distance prediction (EBDP), that find the best matched transformed coefficients on additional neighboring blocks. Experimental results show that the use of transform coefficients greatly enhances the efficiency of intra prediction whilst keeping complexity low compared to H.264/AVC

    Mode decision for the H.264/AVC video coding standard

    Get PDF
    H.264/AVC video coding standard gives us a very promising future for the field of video broadcasting and communication because of its high coding efficiency compared with other older video coding standards. However, high coding efficiency also carries high computational complexity. Fast motion estimation and fast mode decision are two very useful techniques which can significantly reduce computational complexity. This thesis focuses on the field of fast mode decision. The goal of this thesis is that for very similar RD performance compared with H.264/AVC video coding standard, we aim to find new fast mode decision techniques which can afford significant time savings. [Continues.

    Architecture design of a scalable adaptive deblocking filter for H.264/AVC

    Get PDF
    Due to significant bit-rate savings and improved perceptual quality, H.264/AVC, the latest video compression standard from the Joint Video Team, is receiving widespread adoption. Greater coding efficiency relative to previous standards is a result of additional techniques and features. One important change is the inclusion of an in-loop deblocking filter for removal of blocking artifacts. Since the filter can easily account for one-third of the computational complexity of a decoder, its addition was a source of debate during the development of the H.264/AVC standard. Ample research on architecture design of the deblocking filter has been carried out, generally targeted toward high performance profiles. To the best of our knowledge no other research investigated designs that can be scaled from low-power extended profiles up to high performance profiles. This work investigated the design of a scalable architecture for the deblocking filter. Four different designs were implemented. The relative performance of the designs were then compared against each other and existing research through simulation. All designs were targeted towards a Xilinx Virtex 5 field programmable gate array (FPGA)

    Low-power techniques for video decoding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 149-156).The H.264 video coding standard can deliver high compression efficiency at a cost of large complexity and power. The increasing popularity of video capture and playback on portable devices requires that the energy of the video processing be kept to a minimum. This work implements several architecture optimizations that reduce the system power of a high-definition video decoder. In order to decode high resolutions at low voltages and low frequencies, we employ techniques such as pipelining, unit parallelism, multiple cores, and multiple voltage/frequency domains. For example, a 3-core decoder can reduce the required clock frequency by 2.91 x, which enables a power reduction of 61% relative to a full-voltage single-core decoder. To reduce the total memory system power, several caching techniques are demonstrated that can dramatically reduce the off-chip memory bandwidth and power at the cost of increased chip area. A 123 kB data-forwarding cache can reduce the read bandwidth from external memory by 53%, which leads to 44% power savings in the memory reads. To demonstrate these low-power ideas, a H.264/AVC Baseline Level 3.2 decoder ASIC was fabricated in 65 nm CMOS and verified. It operates down to 0.7 V and has a measured power down to 1.8 mW when decoding a high definition 720p video at 30 frames per second, which is over an order of magnitude lower than previously published results.by Daniel Frederic Finchelstein.Ph.D
    corecore