2,387 research outputs found

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Cooperative Radar and Communications Signaling: The Estimation and Information Theory Odd Couple

    Full text link
    We investigate cooperative radar and communications signaling. While each system typically considers the other system a source of interference, by considering the radar and communications operations to be a single joint system, the performance of both systems can, under certain conditions, be improved by the existence of the other. As an initial demonstration, we focus on the radar as relay scenario and present an approach denoted multiuser detection radar (MUDR). A novel joint estimation and information theoretic bound formulation is constructed for a receiver that observes communications and radar return in the same frequency allocation. The joint performance bound is presented in terms of the communication rate and the estimation rate of the system.Comment: 6 pages, 2 figures, to be presented at 2014 IEEE Radar Conferenc

    Spatial Compressive Sensing for MIMO Radar

    Full text link
    We study compressive sensing in the spatial domain to achieve target localization, specifically direction of arrival (DOA), using multiple-input multiple-output (MIMO) radar. A sparse localization framework is proposed for a MIMO array in which transmit and receive elements are placed at random. This allows for a dramatic reduction in the number of elements needed, while still attaining performance comparable to that of a filled (Nyquist) array. By leveraging properties of structured random matrices, we develop a bound on the coherence of the resulting measurement matrix, and obtain conditions under which the measurement matrix satisfies the so-called isotropy property. The coherence and isotropy concepts are used to establish uniform and non-uniform recovery guarantees within the proposed spatial compressive sensing framework. In particular, we show that non-uniform recovery is guaranteed if the product of the number of transmit and receive elements, MN (which is also the number of degrees of freedom), scales with K(log(G))^2, where K is the number of targets and G is proportional to the array aperture and determines the angle resolution. In contrast with a filled virtual MIMO array where the product MN scales linearly with G, the logarithmic dependence on G in the proposed framework supports the high-resolution provided by the virtual array aperture while using a small number of MIMO radar elements. In the numerical results we show that, in the proposed framework, compressive sensing recovery algorithms are capable of better performance than classical methods, such as beamforming and MUSIC.Comment: To appear in IEEE Transactions on Signal Processin

    Coherent, super resolved radar beamforming using self-supervised learning

    Full text link
    High resolution automotive radar sensors are required in order to meet the high bar of autonomous vehicles needs and regulations. However, current radar systems are limited in their angular resolution causing a technological gap. An industry and academic trend to improve angular resolution by increasing the number of physical channels, also increases system complexity, requires sensitive calibration processes, lowers robustness to hardware malfunctions and drives higher costs. We offer an alternative approach, named Radar signal Reconstruction using Self Supervision (R2-S2), which significantly improves the angular resolution of a given radar array without increasing the number of physical channels. R2-S2 is a family of algorithms which use a Deep Neural Network (DNN) with complex range-Doppler radar data as input and trained in a self-supervised method using a loss function which operates in multiple data representation spaces. Improvement of 4x in angular resolution was demonstrated using a real-world dataset collected in urban and highway environments during clear and rainy weather conditions.Comment: 28 pages 10 figure
    corecore