5,287 research outputs found

    Timing Measurement Platform for Arbitrary Black-Box Circuits Based on Transition Probability

    No full text

    Passive isolation/damping system for the Hubble space telescope reaction wheels

    Get PDF
    NASA's Hubble Space Telescope contain large, diffraction limited optics with extraordinary resolution and performance for surpassing existing observatories. The need to reduce structural borne vibration and resultant optical jitter from critical Pointing Control System components, Reaction Wheels, prompted the feasibility investigation and eventual development of a passive isolation system. Alternative design concepts considered were required to meet a host of stringent specifications and pass rigid tests to be successfully verified and integrated into the already built flight vehicle. The final design employs multiple arrays of fluid damped springs that attenuate over a wide spectrum, while confining newly introduced resonances to benign regions of vehicle dynamic response. Overall jitter improvement of roughly a factor of 2 to 3 is attained with this system. The basis, evolution, and performance of the isolation system, specifically discussing design concepts considered, optimization studies, development lessons learned, innovative features, and analytical and ground test verified results are presented

    The semantics of jitter in anticipating time itself within nano-technology

    Get PDF
    The development of nano-technology calls for a careful examination of anticipatory systems at this small scale. For the characteristics of time at the boundary between classical and quantum domains are quite critical for the advancement of the new technology. It has long been well recognised that time is not absolute even in classical subjects like navigation and dynamics where idealised concepts like mean solar time, International Atomic Time and Newton’s dynamical time have had to be used. Time is the data of the Universe and belongs in the semantics of its extensional form. At the boundary between classical and quantum behaviour the uncertainty of time data becomes a significant effect and this is why it is of great importance in nanotechnology, in areas such as the interoperability of different time domains in hardware, where noise in the form of jitter causes a system to behave in an unpredictable fashion, a severe and expensive problem for anticipating how time is to be handled. A fundamental difficulty is that jitter is represented using numbers, giving rise to undecidability and incompleteness according to Gödel’s theorems. To escape the clutches of Gödel undecidability it is necessary to advance to cartesian closed categories beyond the category of sets to represent the relationship between different times as adjoint endofunctors in monad and comonad constructions

    A Delay-Optimal Packet Scheduler for M2M Uplink

    Full text link
    In this paper, we present a delay-optimal packet scheduler for processing the M2M uplink traffic at the M2M application server (AS). Due to the delay-heterogeneity in uplink traffic, we classify it broadly into delay-tolerant and delay-sensitive traffic. We then map the diverse delay requirements of each class to sigmoidal functions of packet delay and formulate a utility-maximization problem that results in a proportionally fair delay-optimal scheduler. We note that solving this optimization problem is equivalent to solving for the optimal fraction of time each class is served with (preemptive) priority such that it maximizes the system utility. Using Monte-Carlo simulations for the queuing process at AS, we verify the correctness of the analytical result for optimal scheduler and show that it outperforms other state-of-the-art packet schedulers such as weighted round robin, max-weight scheduler, fair scheduler and priority scheduling. We also note that at higher traffic arrival rate, the proposed scheduler results in a near-minimal delay variance for the delay-sensitive traffic which is highly desirable. This comes at the expense of somewhat higher delay variance for delay-tolerant traffic which is usually acceptable due to its delay-tolerant nature.Comment: Accepted for publication in IEEE MILCOM 2016 (6 pages, 7 figures
    • 

    corecore