26,960 research outputs found

    Routing in Wireless Multimedia Home Networks

    Get PDF
    This paper describes an adapted version of the destination sequenced distance vector routing protocol (DSDV) which is suitable to calculate routes in a wireless real-time home network. The home network is based on a IEEE 802.11b ad hoc network and uses a scheduled token to enforce real-time behaviour to support multimedia streams. The multimedia network protocol works for both single-hop and multi-hop networks, however in the latter case special measures have to be taken to forward streams from node to node and to find routes. Existing routing protocols exhibit non-deterministic behaviour which may interfere with the correct streaming of multimedia. The proposed routing protocol does not rely on flooding, instead it piggy-backs the real-time token and behaves in a predictable manner. Simulation of the routing protocol shows that routes in the network are found in finite time

    An Axiomatic Approach to Routing

    Full text link
    Information delivery in a network of agents is a key issue for large, complex systems that need to do so in a predictable, efficient manner. The delivery of information in such multi-agent systems is typically implemented through routing protocols that determine how information flows through the network. Different routing protocols exist each with its own benefits, but it is generally unclear which properties can be successfully combined within a given algorithm. We approach this problem from the axiomatic point of view, i.e., we try to establish what are the properties we would seek to see in such a system, and examine the different properties which uniquely define common routing algorithms used today. We examine several desirable properties, such as robustness, which ensures adding nodes and edges does not change the routing in a radical, unpredictable ways; and properties that depend on the operating environment, such as an "economic model", where nodes choose their paths based on the cost they are charged to pass information to the next node. We proceed to fully characterize minimal spanning tree, shortest path, and weakest link routing algorithms, showing a tight set of axioms for each.Comment: In Proceedings TARK 2015, arXiv:1606.0729

    Fuzzy based load and energy aware multipath routing for mobile ad hoc networks

    Get PDF
    Routing is a challenging task in Mobile Ad hoc Networks (MANET) due to their dynamic topology and lack of central administration. As a consequence of un-predictable topology changes of such networks, routing protocols employed need to accurately capture the delay, load, available bandwidth and residual node energy at various locations of the network for effective energy and load balancing. This paper presents a fuzzy logic based scheme that ensures delay, load and energy aware routing to avoid congestion and minimise end-to-end delay in MANETs. In the proposed approach, forwarding delay, average load, available bandwidth and residual battery energy at a mobile node are given as inputs to a fuzzy inference engine to determine the traffic distribution possibility from that node based on the given fuzzy rules. Based on the output from the fuzzy system, traffic is distributed over fail-safe multiple routes to reduce the load at a congested node. Through simulation results, we show that our approach reduces end-to-end delay, packet drop and average energy consumption and increases packet delivery ratio for constant bit rate (CBR) traffic when compared with the popular Ad hoc On-demand Multipath Distance Vector (AOMDV) routing protocol

    Predictable Disruption Tolerant Networks and Delivery Guarantees

    Full text link
    This article studies disruption tolerant networks (DTNs) where each node knows the probabilistic distribution of contacts with other nodes. It proposes a framework that allows one to formalize the behaviour of such a network. It generalizes extreme cases that have been studied before where (a) either nodes only know their contact frequency with each other or (b) they have a perfect knowledge of who meets who and when. This paper then gives an example of how this framework can be used; it shows how one can find a packet forwarding algorithm optimized to meet the 'delay/bandwidth consumption' trade-off: packets are duplicated so as to (statistically) guarantee a given delay or delivery probability, but not too much so as to reduce the bandwidth, energy, and memory consumption.Comment: 9 page

    A Benes Based NoC Switching Architecture for Mixed Criticality Embedded Systems

    Get PDF
    Multi-core, Mixed Criticality Embedded (MCE) real-time systems require high timing precision and predictability to guarantee there will be no interference between tasks. These guarantees are necessary in application areas such as avionics and automotive, where task interference or missed deadlines could be catastrophic, and safety requirements are strict. In modern multi-core systems, the interconnect becomes a potential point of uncertainty, introducing major challenges in proving behaviour is always within specified constraints, limiting the means of growing system performance to add more tasks, or provide more computational resources to existing tasks. We present MCENoC, a Network-on-Chip (NoC) switching architecture that provides innovations to overcome this with predictable, formally verifiable timing behaviour that is consistent across the whole NoC. We show how the fundamental properties of Benes networks benefit MCE applications and meet our architecture requirements. Using SystemVerilog Assertions (SVA), formal properties are defined that aid the refinement of the specification of the design as well as enabling the implementation to be exhaustively formally verified. We demonstrate the performance of the design in terms of size, throughput and predictability, and discuss the application level considerations needed to exploit this architecture
    corecore