1,528 research outputs found

    Deep Binary Reconstruction for Cross-modal Hashing

    Full text link
    With the increasing demand of massive multimodal data storage and organization, cross-modal retrieval based on hashing technique has drawn much attention nowadays. It takes the binary codes of one modality as the query to retrieve the relevant hashing codes of another modality. However, the existing binary constraint makes it difficult to find the optimal cross-modal hashing function. Most approaches choose to relax the constraint and perform thresholding strategy on the real-value representation instead of directly solving the original objective. In this paper, we first provide a concrete analysis about the effectiveness of multimodal networks in preserving the inter- and intra-modal consistency. Based on the analysis, we provide a so-called Deep Binary Reconstruction (DBRC) network that can directly learn the binary hashing codes in an unsupervised fashion. The superiority comes from a proposed simple but efficient activation function, named as Adaptive Tanh (ATanh). The ATanh function can adaptively learn the binary codes and be trained via back-propagation. Extensive experiments on three benchmark datasets demonstrate that DBRC outperforms several state-of-the-art methods in both image2text and text2image retrieval task.Comment: 8 pages, 5 figures, accepted by ACM Multimedia 201

    Unsupervised Generative Adversarial Cross-modal Hashing

    Full text link
    Cross-modal hashing aims to map heterogeneous multimedia data into a common Hamming space, which can realize fast and flexible retrieval across different modalities. Unsupervised cross-modal hashing is more flexible and applicable than supervised methods, since no intensive labeling work is involved. However, existing unsupervised methods learn hashing functions by preserving inter and intra correlations, while ignoring the underlying manifold structure across different modalities, which is extremely helpful to capture meaningful nearest neighbors of different modalities for cross-modal retrieval. To address the above problem, in this paper we propose an Unsupervised Generative Adversarial Cross-modal Hashing approach (UGACH), which makes full use of GAN's ability for unsupervised representation learning to exploit the underlying manifold structure of cross-modal data. The main contributions can be summarized as follows: (1) We propose a generative adversarial network to model cross-modal hashing in an unsupervised fashion. In the proposed UGACH, given a data of one modality, the generative model tries to fit the distribution over the manifold structure, and select informative data of another modality to challenge the discriminative model. The discriminative model learns to distinguish the generated data and the true positive data sampled from correlation graph to achieve better retrieval accuracy. These two models are trained in an adversarial way to improve each other and promote hashing function learning. (2) We propose a correlation graph based approach to capture the underlying manifold structure across different modalities, so that data of different modalities but within the same manifold can have smaller Hamming distance and promote retrieval accuracy. Extensive experiments compared with 6 state-of-the-art methods verify the effectiveness of our proposed approach.Comment: 8 pages, accepted by 32th AAAI Conference on Artificial Intelligence (AAAI), 201
    • …
    corecore