42,480 research outputs found

    How to reduce the number of rating scale items without predictability loss?

    Get PDF
    Rating scales are used to elicit data about qualitative entities (e.g., research collaboration). This study presents an innovative method for reducing the number of rating scale items without the predictability loss. The "area under the receiver operator curve method" (AUC ROC) is used. The presented method has reduced the number of rating scale items (variables) to 28.57\% (from 21 to 6) making over 70\% of collected data unnecessary. Results have been verified by two methods of analysis: Graded Response Model (GRM) and Confirmatory Factor Analysis (CFA). GRM revealed that the new method differentiates observations of high and middle scores. CFA proved that the reliability of the rating scale has not deteriorated by the scale item reduction. Both statistical analysis evidenced usefulness of the AUC ROC reduction method.Comment: 14 pages, 5 figure

    Normative data for idiomatic expressions

    Get PDF
    Peer reviewedPublisher PD

    Hierarchical factor structure of the Intolerance of Uncertainty Scale short form (IUS-12) in the Italian version

    Get PDF
    Despite widespread use, few translations are available for the Intolerance of Uncertainty Scale short form (IUS-12) as well as limited research on its psychometric properties in Italy. Moreover, recent evidence has suggested a multifaceted hierarchical structure for this scale. We compared the two-factor model to second-order and bi-factor models, in which a General IU factor was posited with two more narrow factors: Prospective IU and Inhibitory IU. Models were tested on a pooled dataset of students (N = 609) taking the IUS-12 alone or with other IUS-27 items. The bi-factor model fitted the sample data better than alternative models. The general factor accounted for 80% of the item variance. Presentation mode did not impact scalar invariance. Convergent validity with neuroticism, need for closure, and the uncertainty response scale was high for the total score. As such, scoring the IUS-12 total score is recommended in clinical research and assessmen

    Every which way? On predicting tumor evolution using cancer progression models

    Full text link
    Successful prediction of the likely paths of tumor progression is valuable for diagnostic, prognostic, and treatment purposes. Cancer progression models (CPMs) use cross-sectional samples to identify restrictions in the order of accumulation of driver mutations and thus CPMs encode the paths of tumor progression. Here we analyze the performance of four CPMs to examine whether they can be used to predict the true distribution of paths of tumor progression and to estimate evolutionary unpredictability. Employing simulations we show that if fitness landscapes are single peaked (have a single fitness maximum) there is good agreement between true and predicted distributions of paths of tumor progression when sample sizes are large, but performance is poor with the currently common much smaller sample sizes. Under multi-peaked fitness landscapes (i.e., those with multiple fitness maxima), performance is poor and improves only slightly with sample size. In all cases, detection regime (when tumors are sampled) is a key determinant of performance. Estimates of evolutionary unpredictability from the best performing CPM, among the four examined, tend to overestimate the true unpredictability and the bias is affected by detection regime; CPMs could be useful for estimating upper bounds to the true evolutionary unpredictability. Analysis of twenty-two cancer data sets shows low evolutionary unpredictability for several of the data sets. But most of the predictions of paths of tumor progression are very unreliable, and unreliability increases with the number of features analyzed. Our results indicate that CPMs could be valuable tools for predicting cancer progression but that, currently, obtaining useful predictions of paths of tumor progression from CPMs is dubious, and emphasize the need for methodological work that can account for the probably multi-peaked fitness landscapes in cancerWork partially supported by BFU2015- 67302-R (MINECO/FEDER, EU) to RDU. CV supported by PEJD-2016-BMD-2116 from Comunidad de Madrid to RD

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog

    Get PDF
    Indexación: Web of Science; Scopus.Climate change is a major threat to biodiversity; the development of models that reliably predict its effects on species distributions is a priority for conservation biogeography. Two of the main issues for accurate temporal predictions from Species Distribution Models (SDM) are model extrapolation and unrealistic dispersal scenarios. We assessed the consequences of these issues on the accuracy of climate-driven SDM predictions for the dispersal-limited Darwin's frog Rhinoderma darwinii in South America. We calibrated models using historical data (1950-1975) and projected them across 40 yr to predict distribution under current climatic conditions, assessing predictive accuracy through the area under the ROC curve (AUC) and True Skill Statistics (TSS), contrasting binary model predictions against temporal-independent validation data set (i.e., current presences/absences). To assess the effects of incorporating dispersal processes we compared the predictive accuracy of dispersal constrained models with no dispersal limited SDMs; and to assess the effects of model extrapolation on the predictive accuracy of SDMs, we compared this between extrapolated and no extrapolated areas. The incorporation of dispersal processes enhanced predictive accuracy, mainly due to a decrease in the false presence rate of model predictions, which is consistent with discrimination of suitable but inaccessible habitat. This also had consequences on range size changes over time, which is the most used proxy for extinction risk from climate change. The area of current climatic conditions that was absent in the baseline conditions (i.e., extrapolated areas) represents 39% of the study area, leading to a significant decrease in predictive accuracy of model predictions for those areas. Our results highlight (1) incorporating dispersal processes can improve predictive accuracy of temporal transference of SDMs and reduce uncertainties of extinction risk assessments from global change; (2) as geographical areas subjected to novel climates are expected to arise, they must be reported as they show less accurate predictions under future climate scenarios. Consequently, environmental extrapolation and dispersal processes should be explicitly incorporated to report and reduce uncertainties in temporal predictions of SDMs, respectively. Doing so, we expect to improve the reliability of the information we provide for conservation decision makers under future climate change scenarios.http://onlinelibrary.wiley.com/doi/10.1002/eap.1556/abstract;jsessionid=1E2084FF99600D0EEC9FA358A3DBC2A3.f02t0

    The ECMWF Ensemble Prediction System: Looking Back (more than) 25 Years and Projecting Forward 25 Years

    Full text link
    This paper has been written to mark 25 years of operational medium-range ensemble forecasting. The origins of the ECMWF Ensemble Prediction System are outlined, including the development of the precursor real-time Met Office monthly ensemble forecast system. In particular, the reasons for the development of singular vectors and stochastic physics - particular features of the ECMWF Ensemble Prediction System - are discussed. The author speculates about the development and use of ensemble prediction in the next 25 years.Comment: Submitted to Special Issue of the Quarterly Journal of the Royal Meteorological Society: 25 years of ensemble predictio

    An explanatory and predictive PLS-SEM approach to the relationship between organizational culture,organizational performance and customer loyalty: The case of health clubs

    Get PDF
    Purpose This study aims to analyze the impact and predictive capacity of organizational culture on both customer loyalty and organizational performance in health clubs using data from managers and customers of health clubs in Spain. Design/methodology/approach A total of 101 managers were asked to measure organizational culture and organizational performance and 2,931 customers were asked to indicate their customer loyalty. The proposed hypotheses were tested and their predictability assessed through PLS-SEM. A composite concept was adopted to analyze the relationships between the different constructs and their indicators. Findings The findings suggest that organizational culture has a positive relationship with both customer loyalty and organizational performance. The four main dimensions of organizational culture that influence this relationship are, in order of significance, organizational presence, formalization, atmosphere and service-equipment. The authors’ model has a very good predictive power for both dependent variables. Originality/value Customer loyalty is an aspect of health clubs that can be improved. This study highlights the importance of creating a strong organizational culture in health clubs, as it enhances and predicts customer loyalty and organizational performance. Its predictability has already been tested with samples of managers and customers, with the analysis being performed from the perspective of the organization’s management and customer perceptions. This study also contributes to the field of sport management, using a predictive PLS-SEM techniqu
    corecore