681 research outputs found

    A systematic evaluation of deep learning methods for the prediction of drug synergy in cancer

    Get PDF
    One of the main obstacles to the successful treatment of cancer is the phenomenon of drug resistance. A common strategy to overcome resistance is the use of combination therapies. However, the space of possibilities is huge and efficient search strategies are required. Machine Learning (ML) can be a useful tool for the discovery of novel, clinically relevant anti-cancer drug combinations. In particular, deep learning (DL) has become a popular choice for modeling drug combination effects. Here, we set out to examine the impact of different methodological choices on the performance of multimodal DL-based drug synergy prediction methods, including the use of different input data types, preprocessing steps and model architectures. Focusing on the NCI ALMANAC dataset, we found that feature selection based on prior biological knowledge has a positive impact on performance. Drug features appeared to be more predictive of drug response. Molecular fingerprint-based drug representations performed slightly better than learned representations, and gene expression data of cancer or drug response-specific genes also improved performance. In general, fully connected feature-encoding subnetworks outperformed other architectures, with DL outperforming other ML methods. Using a state-of-the-art interpretability method, we showed that DL models can learn to associate drug and cell line features with drug response in a biologically meaningful way. The strategies explored in this study will help to improve the development of computational methods for the rational design of effective drug combinations for cancer therapy.Author summary Cancer therapies often fail because tumor cells become resistant to treatment. One way to overcome resistance is by treating patients with a combination of two or more drugs. Some combinations may be more effective than when considering individual drug effects, a phenomenon called drug synergy. Computational drug synergy prediction methods can help to identify new, clinically relevant drug combinations. In this study, we developed several deep learning models for drug synergy prediction. We examined the effect of using different types of deep learning architectures, and different ways of representing drugs and cancer cell lines. We explored the use of biological prior knowledge to select relevant cell line features, and also tested data-driven feature reduction methods. We tested both precomputed drug features and deep learning methods that can directly learn features from raw representations of molecules. We also evaluated whether including genomic features, in addition to gene expression data, improves the predictive performance of the models. Through these experiments, we were able to identify strategies that will help guide the development of new deep learning models for drug synergy prediction in the future.Competing Interest StatementThe authors have declared no competing interest.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit and through a PhD scholarship (SFRH/BD/130913/2017) awarded to Delora Baptista.info:eu-repo/semantics/publishedVersio

    Graph Representation Learning in Biomedicine

    Full text link
    Biomedical networks are universal descriptors of systems of interacting elements, from protein interactions to disease networks, all the way to healthcare systems and scientific knowledge. With the remarkable success of representation learning in providing powerful predictions and insights, we have witnessed a rapid expansion of representation learning techniques into modeling, analyzing, and learning with such networks. In this review, we put forward an observation that long-standing principles of networks in biology and medicine -- while often unspoken in machine learning research -- can provide the conceptual grounding for representation learning, explain its current successes and limitations, and inform future advances. We synthesize a spectrum of algorithmic approaches that, at their core, leverage graph topology to embed networks into compact vector spaces, and capture the breadth of ways in which representation learning is proving useful. Areas of profound impact include identifying variants underlying complex traits, disentangling behaviors of single cells and their effects on health, assisting in diagnosis and treatment of patients, and developing safe and effective medicines

    Graphdti: A Robust Deep Learning Predictor Of Drug-Target Interactions From Multiple Heterogeneous Data

    Get PDF
    Traditional techniqueset identification, we developed GraphDTI, a robust machine learning framework integrating the molecular-level information on drugs, proteins, and binding sites with the system-level information on gene expression and protein-protein interactions. In order to properly evaluate the performance of GraphDTI, we compiled a high-quality benchmarking dataset and devised a new cluster-based cross-validation p to identify macromolecular targets for drugs utilize solely the information on a query drug and a putative target. Nonetheless, the mechanisms of action of many drugs depend not only on their binding affinity toward a single protein, but also on the signal transduction through cascades of molecular interactions leading to certain phenotypes. Although using protein-protein interaction networks and drug-perturbed gene expression profiles can facilitate system-level investigations of drug-target interactions, utilizing such large and heterogeneous data poses notable challenges. To improve the state-of-the-art in drug targrotocol. Encouragingly, GraphDTI not only yields an AUC of 0.996 against the validation dataset, but it also generalizes well to unseen data with an AUC of 0.939, significantly outperforming other predictors. Finally, selected examples of identified drug-target interactions are validated against the biomedical literature. Numerous applications of GraphDTI include the investigation of drug polypharmacological effects, side effects through off-target binding, and repositioning opportunities

    Fusion of molecular representations and prediction of biological activity using convolutional neural network and transfer learning

    Get PDF
    Basic structural features and physicochemical properties of chemical molecules determine their behaviour during chemical, physical, biological and environmental processes and hence need to be investigated for determining and modelling the actions of the molecule. Computational approaches such as machine learning methods are alternatives to predict physiochemical properties of molecules based on their structures. However, limited accuracy and error rates of these predictions restrict their use. This study developed three classes of new methods based on deep learning convolutional neural network for bioactivity prediction of chemical compounds. The molecules are represented as a convolutional neural network (CNN) with new matrix format to represent the molecular structures. The first class of methods involved the introduction of three new molecular descriptors, namely Mol2toxicophore based on molecular interaction with toxicophores features, Mol2Fgs based on distributed representation for constructing abstract features maps of a selected set of small molecules, and Mol2mat, which is a molecular matrix representation adapted from the well-known 2D-fingerprint descriptors. The second class of methods was based on merging multi-CNN models that combined all the molecular representations. The third class of methods was based on automatic learning of features using values within the neurons of the last layer in the proposed CNN architecture. To evaluate the performance of the methods, a series of experiments were conducted using two standard datasets, namely MDL Drug Data Report (MDDR) and Sutherland datasets. The MDDR datasets comprised 10 homogeneous and 10 heterogeneous activity classes, whilst Sutherland datasets comprised four homogeneous activity classes. Based on the experiments, the Mol2toxicophore showed satisfactory prediction rates of 92% and 80% for homogeneous and heterogeneous activity classes, respectively. The Mol2Fgs was better than Mol2toxicophore with prediction accuracy result of 95% for homogeneous and 90% for heterogeneous activity classes. The Mol2mat molecular representation had the highest prediction accuracy with 97% and 94% for homogeneous and heterogeneous datasets, respectively. The combined multi-CNN model leveraging on the knowledge acquired from the three molecular presentations produced better accuracy rate of 99% for the homogeneous and 98% for heterogeneous datasets. In terms of molecular similarity measure, use of the values in the neurons of the last hidden layer as the automatically learned feature in the multi-CNN model as a novel molecular learning representation was found to perform well with 88.6% in terms of average recall value in 5% structures most similar to the target search. The results have demonstrated that the newly developed methods can be effectively used for bioactivity prediction and molecular similarity searching

    Drug Target Interaction Prediction Using Machine Learning Techniques – A Review

    Get PDF
    Drug discovery is a key process, given the rising and ubiquitous demand for medication to stay in good shape right through the course of one’s life. Drugs are small molecules that inhibit or activate the function of a protein, offering patients a host of therapeutic benefits. Drug design is the inventive process of finding new medication, based on targets or proteins. Identifying new drugs is a process that involves time and money. This is where computer-aided drug design helps cut time and costs. Drug design needs drug targets that are a protein and a drug compound, with which the interaction between a drug and a target is established. Interaction, in this context, refers to the process of discovering protein binding sites, which are protein pockets that bind with drugs. Pockets are regions on a protein macromolecule that bind to drug molecules. Researchers have been at work trying to determine new Drug Target Interactions (DTI) that predict whether or not a given drug molecule will bind to a target. Machine learning (ML) techniques help establish the interaction between drugs and their targets, using computer-aided drug design. This paper aims to explore ML techniques better for DTI prediction and boost future research. Qualitative and quantitative analyses of ML techniques show that several have been applied to predict DTIs, employing a range of classifiers. Though DTI prediction improves with negative drug target pairs (DTP), the lack of true negative DTPs has led to the use a particular dataset of drugs and targets. Using dynamic DTPs improves DTI prediction. Little attention has so far been paid to developing a new classifier for DTI classification, and there is, unquestionably, a need for better ones

    Review of machine learning technologies and neural networks in drug synergy combination pharmacological research

    Get PDF
    Using machine learning (in silico) allows predicting how to get the right combination of drugs and skip the experimental steps in a study that take a lot of time and financial expenses. Gradual preparation is needed for the Deep Learning of Drug Synergy, starting from creating a base of drugs, their characteristics and ways of interactin
    corecore