1,945 research outputs found

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page

    The Strength of Abstraction with Predicative Comprehension

    Full text link
    Frege's theorem says that second-order Peano arithmetic is interpretable in Hume's Principle and full impredicative comprehension. Hume's Principle is one example of an abstraction principle, while another paradigmatic example is Basic Law V from Frege's Grundgesetze. In this paper we study the strength of abstraction principles in the presence of predicative restrictions on the comprehension schema, and in particular we study a predicative Fregean theory which contains all the abstraction principles whose underlying equivalence relations can be proven to be equivalence relations in a weak background second-order logic. We show that this predicative Fregean theory interprets second-order Peano arithmetic.Comment: Forthcoming in Bulletin of Symbolic Logic. Slight change in title from previous version, at request of referee

    On the mathematical and foundational significance of the uncountable

    Full text link
    We study the logical and computational properties of basic theorems of uncountable mathematics, including the Cousin and Lindel\"of lemma published in 1895 and 1903. Historically, these lemmas were among the first formulations of open-cover compactness and the Lindel\"of property, respectively. These notions are of great conceptual importance: the former is commonly viewed as a way of treating uncountable sets like e.g. [0,1][0,1] as 'almost finite', while the latter allows one to treat uncountable sets like e.g. R\mathbb{R} as 'almost countable'. This reduction of the uncountable to the finite/countable turns out to have a considerable logical and computational cost: we show that the aforementioned lemmas, and many related theorems, are extremely hard to prove, while the associated sub-covers are extremely hard to compute. Indeed, in terms of the standard scale (based on comprehension axioms), a proof of these lemmas requires at least the full extent of second-order arithmetic, a system originating from Hilbert-Bernays' Grundlagen der Mathematik. This observation has far-reaching implications for the Grundlagen's spiritual successor, the program of Reverse Mathematics, and the associated G\"odel hierachy. We also show that the Cousin lemma is essential for the development of the gauge integral, a generalisation of the Lebesgue and improper Riemann integrals that also uniquely provides a direct formalisation of Feynman's path integral.Comment: 35 pages with one figure. The content of this version extends the published version in that Sections 3.3.4 and 3.4 below are new. Small corrections/additions have also been made to reflect new development

    Hypatia's silence. Truth, justification, and entitlement.

    Get PDF
    Hartry Field distinguished two concepts of type-free truth: scientific truth and disquotational truth. We argue that scientific type-free truth cannot do justificatory work in the foundations of mathematics. We also present an argument, based on Crispin Wright's theory of cognitive projects and entitlement, that disquotational truth can do justificatory work in the foundations of mathematics. The price to pay for this is that the concept of disquotational truth requires non-classical logical treatment

    Predicativity and parametric polymorphism of Brouwerian implication

    Get PDF
    A common objection to the definition of intuitionistic implication in the Proof Interpretation is that it is impredicative. I discuss the history of that objection, argue that in Brouwer's writings predicativity of implication is ensured through parametric polymorphism of functions on species, and compare this construal with the alternative approaches to predicative implication of Goodman, Dummett, Prawitz, and Martin-L\"of.Comment: Added further references (Pistone, Poincar\'e, Tabatabai, Van Atten

    Logicism, Ontology, and the Epistemology of Second-Order Logic

    Get PDF
    In two recent papers, Bob Hale has attempted to free second-order logic of the 'staggering existential assumptions' with which Quine famously attempted to saddle it. I argue, first, that the ontological issue is at best secondary: the crucial issue about second-order logic, at least for a neo-logicist, is epistemological. I then argue that neither Crispin Wright's attempt to characterize a `neutralist' conception of quantification that is wholly independent of existential commitment, nor Hale's attempt to characterize the second-order domain in terms of definability, can serve a neo-logicist's purposes. The problem, in both cases, is similar: neither Wright nor Hale is sufficiently sensitive to the demands that impredicativity imposes. Finally, I defend my own earlier attempt to finesse this issue, in "A Logic for Frege's Theorem", from Hale's criticisms

    Potential infinity, abstraction principles and arithmetic (Leniewski Style)

    Get PDF
    This paper starts with an explanation of how the logicist research program can be approached within the framework of Leśniewski’s systems. One nice feature of the system is that Hume’s Principle is derivable in it from an explicit definition of natural numbers. I generalize this result to show that all predicative abstraction principles corresponding to second-level relations, which are provably equivalence relations, are provable. However, the system fails, despite being much neater than the construction of Principia Mathematica (PM). One of the key reasons is that, just as in the case of the system of PM, without the assumption that infinitely many objects exist, (renderings of) most of the standard axioms of Peano Arithmetic are not derivable in the system. I prove that introducing modal quantifiers meant to capture the intuitions behind potential infinity results in the (renderings of) axioms of Peano Arithmetic (PA) being valid in all relational models (i.e. Kripke-style models, to be defined later on) of the extended language. The second, historical part of the paper contains a user-friendly description of Leśniewski’s own arithmetic and a brief investigation into its properties
    • …
    corecore