1,595 research outputs found

    Conjunctive Predicate Transformers for Reasoning about Concurrent Computation

    Get PDF
    In this paper we propose a calculus for reasoning about concurrent programs inspired by the wp calculus for reasoning about sequential programs. We suggest predicate transformers for reasoning about progress properties and for deducing properties obtained by parallel composition. The paper presents theorems about the predicate transformers and suggests how they can be used in program design. Familiarity with the wp calculus is assumed

    Abstract Interpretation with Unfoldings

    Full text link
    We present and evaluate a technique for computing path-sensitive interference conditions during abstract interpretation of concurrent programs. In lieu of fixed point computation, we use prime event structures to compactly represent causal dependence and interference between sequences of transformers. Our main contribution is an unfolding algorithm that uses a new notion of independence to avoid redundant transformer application, thread-local fixed points to reduce the size of the unfolding, and a novel cutoff criterion based on subsumption to guarantee termination of the analysis. Our experiments show that the abstract unfolding produces an order of magnitude fewer false alarms than a mature abstract interpreter, while being several orders of magnitude faster than solver-based tools that have the same precision.Comment: Extended version of the paper (with the same title and authors) to appear at CAV 201

    Convolution, Separation and Concurrency

    Full text link
    A notion of convolution is presented in the context of formal power series together with lifting constructions characterising algebras of such series, which usually are quantales. A number of examples underpin the universality of these constructions, the most prominent ones being separation logics, where convolution is separating conjunction in an assertion quantale; interval logics, where convolution is the chop operation; and stream interval functions, where convolution is used for analysing the trajectories of dynamical or real-time systems. A Hoare logic is constructed in a generic fashion on the power series quantale, which applies to each of these examples. In many cases, commutative notions of convolution have natural interpretations as concurrency operations.Comment: 39 page

    Tracing monadic computations and representing effects

    Full text link
    In functional programming, monads are supposed to encapsulate computations, effectfully producing the final result, but keeping to themselves the means of acquiring it. For various reasons, we sometimes want to reveal the internals of a computation. To make that possible, in this paper we introduce monad transformers that add the ability to automatically accumulate observations about the course of execution as an effect. We discover that if we treat the resulting trace as the actual result of the computation, we can find new functionality in existing monads, notably when working with non-terminating computations.Comment: In Proceedings MSFP 2012, arXiv:1202.240

    Linearizability with Ownership Transfer

    Full text link
    Linearizability is a commonly accepted notion of correctness for libraries of concurrent algorithms. Unfortunately, it assumes a complete isolation between a library and its client, with interactions limited to passing values of a given data type. This is inappropriate for common programming languages, where libraries and their clients can communicate via the heap, transferring the ownership of data structures, and can even run in a shared address space without any memory protection. In this paper, we present the first definition of linearizability that lifts this limitation and establish an Abstraction Theorem: while proving a property of a client of a concurrent library, we can soundly replace the library by its abstract implementation related to the original one by our generalisation of linearizability. This allows abstracting from the details of the library implementation while reasoning about the client. We also prove that linearizability with ownership transfer can be derived from the classical one if the library does not access some of data structures transferred to it by the client

    Refinement Calculus of Reactive Systems

    Full text link
    Refinement calculus is a powerful and expressive tool for reasoning about sequential programs in a compositional manner. In this paper we present an extension of refinement calculus for reactive systems. Refinement calculus is based on monotonic predicate transformers, which transform sets of post-states into sets of pre-states. To model reactive systems, we introduce monotonic property transformers, which transform sets of output traces into sets of input traces. We show how to model in this semantics refinement, sequential composition, demonic choice, and other semantic operations on reactive systems. We use primarily higher order logic to express our results, but we also show how property transformers can be defined using other formalisms more amenable to automation, such as linear temporal logic (suitable for specifications) and symbolic transition systems (suitable for implementations). Finally, we show how this framework generalizes previous work on relational interfaces so as to be able to express systems with infinite behaviors and liveness properties
    corecore