64 research outputs found

    Fast Mesh Refinement in Pseudospectral Optimal Control

    Get PDF
    Mesh refinement in pseudospectral (PS) optimal control is embarrassingly easy --- simply increase the order NN of the Lagrange interpolating polynomial and the mathematics of convergence automates the distribution of the grid points. Unfortunately, as NN increases, the condition number of the resulting linear algebra increases as N2N^2; hence, spectral efficiency and accuracy are lost in practice. In this paper, we advance Birkhoff interpolation concepts over an arbitrary grid to generate well-conditioned PS optimal control discretizations. We show that the condition number increases only as N\sqrt{N} in general, but is independent of NN for the special case of one of the boundary points being fixed. Hence, spectral accuracy and efficiency are maintained as NN increases. The effectiveness of the resulting fast mesh refinement strategy is demonstrated by using \underline{polynomials of over a thousandth order} to solve a low-thrust, long-duration orbit transfer problem.Comment: 27 pages, 12 figures, JGCD April 201

    A Universal Birkhoff Theory for Fast Trajectory Optimization

    Full text link
    Over the last two decades, pseudospectral methods based on Lagrange interpolants have flourished in solving trajectory optimization problems and their flight implementations. In a seemingly unjustified departure from these highly successful methods, a new starting point for trajectory optimization is proposed. This starting point is based on the recently-developed concept of universal Birkhoff interpolants. The new approach offers a substantial computational upgrade to the Lagrange theory in completely flattening the rapid growth of the condition numbers from O(N2) to O(1), where N is the number of grid points. In addition, the Birkhoff-specific primal-dual computations are isolated to a well-conditioned linear system even for nonlinear, nonconvex problems. This is part I of a two-part paper. In part I, a new theory is developed on the basis of two hypotheses. Other than these hypotheses, the theoretical development makes no assumptions on the choices of basis functions or the selection of grid points. Several covector mapping theorems are proved to establish the mathematical equivalence between direct and indirect Birkhoff methods. In part II of this paper (with Proulx), it is shown that a select family of Gegenbauer grids satisfy the two hypotheses required for the theory to hold. Numerical examples in part II illustrate the power and utility of the new theory

    Implementations of the Universal Birkhoff Theory for Fast Trajectory Optimization

    Full text link
    This is part II of a two-part paper. Part I presented a universal Birkhoff theory for fast and accurate trajectory optimization. The theory rested on two main hypotheses. In this paper, it is shown that if the computational grid is selected from any one of the Legendre and Chebyshev family of node points, be it Lobatto, Radau or Gauss, then, the resulting collection of trajectory optimization methods satisfy the hypotheses required for the universal Birkhoff theory to hold. All of these grid points can be generated at an O(1)\mathcal{O}(1) computational speed. Furthermore, all Birkhoff-generated solutions can be tested for optimality by a joint application of Pontryagin's- and Covector-Mapping Principles, where the latter was developed in Part~I. More importantly, the optimality checks can be performed without resorting to an indirect method or even explicitly producing the full differential-algebraic boundary value problem that results from an application of Pontryagin's Principle. Numerical problems are solved to illustrate all these ideas. The examples are chosen to particularly highlight three practically useful features of Birkhoff methods: (1) bang-bang optimal controls can be produced without suffering any Gibbs phenomenon, (2) discontinuous and even Dirac delta covector trajectories can be well approximated, and (3) extremal solutions over dense grids can be computed in a stable and efficient manner

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    Lectures on Computational Numerical Analysis of Partial Differential Equations

    Get PDF
    From Chapter 1: The purpose of these lectures is to present a set of straightforward numerical methods with applicability to essentially any problem associated with a partial differential equation (PDE) or system of PDEs independent of type, spatial dimension or form of nonlinearity.https://uknowledge.uky.edu/me_textbooks/1002/thumbnail.jp
    • …
    corecore