73 research outputs found

    The use of the mesh free methods (radial basis functions) in the modeling of radionuclide migration and moving boundary value problems

    Get PDF
    Recently, the mesh free methods (radial basis functions-RBFs) have emerged as a novel computing method in the scientific and engineering computing community. The numerical solution of partial differential equations (PDEs) has been usually obtained by finite difference methods (FDM), finite element methods (FEM) and boundary elements methods (BEM). These conventional numerical methods still have some drawbacks. For example, the construction of the mesh in two or more dimensions is a nontrivial problem. Solving PDEs using radial basis function (RBF) collocations is an attractive alternative to these traditional methods because no tedious mesh generation is required. We compare the mesh free method, which uses radial basis functions, with the traditional finite difference scheme and analytical solutions. We will present some examples of using RBFs in geostatistical analysis of radionuclide migration modeling. The advection-dispersion equation will be used in the Eulerian and Lagrangian forms. Stefan's or moving boundary value problems will also be presented. The position of the moving boundary will be simulated by the moving data centers method and level set method

    Investigation of the use of meshfree methods for haptic thermal management of design and simulation of MEMS

    Get PDF
    This thesis presents a novel approach of using haptic sensing technology combined with virtual environment (VE) for the thermal management of Micro-Electro-Mechanical-Systems (MEMS) design. The goal is to reduce the development cycle by avoiding the costly iterative prototyping procedure. In this regard, we use haptic feedback with virtua lprototyping along with an immersing environment. We also aim to improve the productivity and capability of the designer to better grasp the phenomena operating at the micro-scale level, as well as to augment computational steering through haptic channels. To validate the concept of haptic thermal management, we have implemented a demonstrator with a user friendly interface which allows to intuitively "feel" the temperature field through our concept of haptic texturing. The temperature field in a simple MEMS component is modeled using finite element methods (FEM) or finite difference method (FDM) and the user is able to feel thermal expansion using a combination of different haptic feedback. In haptic application, the force rendering loop needs to be updated at a frequency of 1Khz in order to maintain continuity in the user perception. When using FEM or FDM for our three-dimensional model, the computational cost increases rapidly as the mesh size is reduced to ensure accuracy. Hence, it constrains the complexity of the physical model to approximate temperature or stress field solution. It would also be difficult to generate or refine the mesh in real time for CAD process. In order to circumvent the limitations due to the use of conventional mesh-based techniques and to avoid the bothersome task of generating and refining the mesh, we investigate the potential of meshfree methods in the context of our haptic application. We review and compare the different meshfree formulations against FEM mesh based technique. We have implemented the different methods for benchmarking thermal conduction and elastic problems. The main work of this thesis is to determine the relevance of the meshfree option in terms of flexibility of design and computational charge for haptic physical model

    Rapid re-meshing and re-solution of three-dimensional boundary element problems for interactive stress analysis

    Get PDF
    Structural design of mechanical components is an iterative process that involves multiple stress analysis runs; this can be time consuming and expensive. It is becoming increasingly possible to make significant improvements in the efficiency of this process by increasing the level of interactivity. One approach is through real-time re-analysis of models with continuously updating geometry. A key part of such a strategy is the ability to accommodate changes in geometry with minimal perturbation to an existing mesh. This work introduces a new re-meshing algorithm that can generate and update a boundary element mesh in real-time as a series of small changes are sequentially applied to the associated model. The algorithm is designed to make minimal updates to the mesh between each step whilst preserving a suitable mesh quality that retains accuracy in the stress results. This significantly reduces the number of terms that need to be updated in the system matrix, thereby reducing the time required to carry out a re-analysis of the model. A range of solvers are assessed to find the most efficient and robust method of re-solving the system. The GMRES algorithm, using complete approximate LU preconditioning, is found to provide the fastest convergence rate

    Kernel Methods are Competitive for Operator Learning

    Full text link
    We present a general kernel-based framework for learning operators between Banach spaces along with a priori error analysis and comprehensive numerical comparisons with popular neural net (NN) approaches such as Deep Operator Net (DeepONet) [Lu et al.] and Fourier Neural Operator (FNO) [Li et al.]. We consider the setting where the input/output spaces of target operator G:UV\mathcal{G}^\dagger\,:\, \mathcal{U}\to \mathcal{V} are reproducing kernel Hilbert spaces (RKHS), the data comes in the form of partial observations ϕ(ui),φ(vi)\phi(u_i), \varphi(v_i) of input/output functions vi=G(ui)v_i=\mathcal{G}^\dagger(u_i) (i=1,,Ni=1,\ldots,N), and the measurement operators ϕ:URn\phi\,:\, \mathcal{U}\to \mathbb{R}^n and φ:VRm\varphi\,:\, \mathcal{V} \to \mathbb{R}^m are linear. Writing ψ:RnU\psi\,:\, \mathbb{R}^n \to \mathcal{U} and χ:RmV\chi\,:\, \mathbb{R}^m \to \mathcal{V} for the optimal recovery maps associated with ϕ\phi and φ\varphi, we approximate G\mathcal{G}^\dagger with Gˉ=χfˉϕ\bar{\mathcal{G}}=\chi \circ \bar{f} \circ \phi where fˉ\bar{f} is an optimal recovery approximation of f:=φGψ:RnRmf^\dagger:=\varphi \circ \mathcal{G}^\dagger \circ \psi\,:\,\mathbb{R}^n \to \mathbb{R}^m. We show that, even when using vanilla kernels (e.g., linear or Mat\'{e}rn), our approach is competitive in terms of cost-accuracy trade-off and either matches or beats the performance of NN methods on a majority of benchmarks. Additionally, our framework offers several advantages inherited from kernel methods: simplicity, interpretability, convergence guarantees, a priori error estimates, and Bayesian uncertainty quantification. As such, it can serve as a natural benchmark for operator learning.Comment: 35 pages, 10 figure

    Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018

    Get PDF
    This open access book features a selection of high-quality papers from the presentations at the International Conference on Spectral and High-Order Methods 2018, offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions
    corecore