1,875 research outputs found

    Preconditioned iterative methods on sparse subspaces

    Get PDF
    AbstractWhen some rows of the system matrix and a preconditioner coincide, preconditioned iterations can be reduced to a sparse subspace. Taking advantage of this property can lead to considerable memory and computational savings. This is particularly useful with the GMRES method. We consider the iterative solution of a discretized partial differential equation on this sparse subspace. With a domain decomposition method and a fictitious domain method the subspace corresponds a small neighborhood of an interface. As numerical examples we solve the Helmholtz equation using a fictitious domain method and an elliptic equation with a jump in the diffusion coefficient using a separable preconditioner

    Low-rank approximate inverse for preconditioning tensor-structured linear systems

    Full text link
    In this paper, we propose an algorithm for the construction of low-rank approximations of the inverse of an operator given in low-rank tensor format. The construction relies on an updated greedy algorithm for the minimization of a suitable distance to the inverse operator. It provides a sequence of approximations that are defined as the projections of the inverse operator in an increasing sequence of linear subspaces of operators. These subspaces are obtained by the tensorization of bases of operators that are constructed from successive rank-one corrections. In order to handle high-order tensors, approximate projections are computed in low-rank Hierarchical Tucker subsets of the successive subspaces of operators. Some desired properties such as symmetry or sparsity can be imposed on the approximate inverse operator during the correction step, where an optimal rank-one correction is searched as the tensor product of operators with the desired properties. Numerical examples illustrate the ability of this algorithm to provide efficient preconditioners for linear systems in tensor format that improve the convergence of iterative solvers and also the quality of the resulting low-rank approximations of the solution
    • …
    corecore