36 research outputs found

    A semi-Lagrangian micro-macro method for viscoelastic flow calculations

    Get PDF
    We present in this paper a semi-Lagrangian algorithm to calculate the viscoelastic flow in which a dilute polymer solution is modeled by the FENE dumbbell kinetic model. In this algorithm the material derivative operator of the Navier–Stokes equations (the macroscopic flow equations) is discretized in time by a semi-Lagrangian formulation of the second order backward difference formula (BDF2). This discretization leads to solving each time step a linear generalized Stokes problem. For the stochastic differential equations of the microscopic scale model, we use the second order predictor-corrector scheme proposed in [22] applied along the forward trajectories of the center of mass of the dumbbells. Important features of the algorithm are (1) the new semi-Lagrangian projection scheme; (2) the scheme to move and locate both the mesh-points and the dumbbells; and (3) the calculation and space discretization of the polymer stress. The algorithm has been tested on the 2d 10:1 contraction benchmark problem and has proved to be accurate and stable, being able to deal with flows at high Weissenberg (Wi) numbers; specifically, by adjusting the size of the time step we obtain solutions at Wi=444

    Mehrskalige Modellierung von Gummi-Hysteresereibung auf rauen Oberflächen

    Get PDF
    The performance of car tires on road tracks is strongly affected by hysteretic friction. In order to optimize driving characteristics, like minimizing fuel consumption, improving skid resistance, increasing tire durability, and increasing vehicle controllability during steering and braking, the rolling friction coefficient should be predicted properly. The accurate and efficient modeling and prediction of the hysteretic friction is still a challenge. In the past decade, two different modeling frameworks have attracted significant attention. They are the viscoelastic half-space (VHS)-based contact mechanics model, based on linear kinematics and implemented with the boundary element method (BEM), and the viscoelastic contact model in the finite deformation framework implemented with the finite element method (FEM). The first one has the ability to model all involved length scales at once with a reduced computational cost under the assumption of a flat geometry of the rough surface and small deformations. The second one does not have these limitations and is able to predict the friction coefficient accurately in the finite deformation framework, but at much higher computational cost. It is not able to investigate all involved length scales at once since it needs an extremely fine mesh refinement, which leads to an impractically slow simulation. This work has two major aims. The first goal is to study the accuracy of geometrical and rheological linearity assumptions in evaluation of rolling friction coefficient. This is done by comparing the simulation results of tire tread block in contact with a sinusoidal road track surface using the linear VHS-based model and the finite deformation model in terms of rolling friction coefficient, contact area, and pressure distributions. It has been found that accurate rolling friction predictions can be obtained through the linear VHS-based model within Reynolds assumption for moderate values of root mean square slopes, whereas finite deformation computations should be adopted for large root mean square slopes. The contact area is much more sensitive to the geometrical and rheological nonlinearities than the rolling friction coefficient. The second goal of the thesis is to establish a new hybrid (nonlinear FEM/linear BEM) multiscale method which combines the advantages of both methods. The presented hybrid multiscale approach has proven to be a suitable tool to study rolling-friction coefficient within a plausible degree of accuracy for relative large contact area and low sliding velocities. It allows a more faster calculation of friction coefficient than the finite deformation model.Das Verhalten von Pkw-Reifen auf Straßenoberflächen wird stark von hysteretischer Reibung beeinflusst. Um die Fahreigenschaften zu optimieren, beispielsweise zur Reduktion des Kraftstoffverbrauchs, der Verbesserung der Griffigkeit, der Erhöhung der Reifenhaltbarkeit und der Verbesserung der Kontrolle während des Lenkens und Bremsens, sollte die hysteretische Reibung richtig vorhergesagt werden. Die genaue und effiziente Vorhersage von hysteretischer Reibung, sowohl von theoretischer wie numerischer Seite, ist eine Herausforderung. Im letzten Jahrzehnt haben zwei verschiedene Modellierungsverfahren an Aufmerksamkeit gewonnen. Sie sind: das viskoelastische Halbraummodell, das auf einer linearen Kinematik basiert und mit der Randelemente-Methode implementiert wurde, sowie das viskoelastische Kontaktmodell im Rahmen finiter Deformationen, das mit der Finite-Elemente-Methode implementiert wurde. Mit der ersten Methode können alle beteiligten Längenskalen gleichzeitig und mit reduziertem Berechnungsaufwand simuliert werden, wobei eine flache Geometrie der rauen Oberfläche und lineare Verformungen angenommen werden. Die zweite Methode hat diese Einschränkungen nicht und kann den Reibkoeffizienten genau vorhersagen, jedoch bei weitaus höherer Berechnungszeit. Hierbei können jedoch nicht alle beteiligten Längenskalen gleichzeitig untersucht werden, da ein sehr feines Netz benötigt würde, was zu inakzeptabel langen Simulationen führt. Diese Arbeit hat zwei Hauptziele. Das erste Ziel besteht darin, die Auswirkungen geometrischer und rheologischer Linearitätsannahmen bei der Berechnung des Reibkoeffizienten zu untersuchen. Dies erfolgt durch Vergleich der Simulationsergebnisse eines Reifenprofilblocks in Kontakt mit einer sinusförmigen Oberfläche, unter Verwendung des linearen viskoelastischen Halbraummodells, das mit der Randelemente-Methode implementiert wurde, und des viskoelastischen Kontaktmodells im Rahmen finiter Deformationenund der Finite-Elemente-Methode. Betrachtet wurden Reibkoeffizient, Kontaktfläche und Druckverteilung. Es wurde festgestellt, dass mit dem viskoelastischen Halbraum Modell innerhalb der Linearitätsannahmen genaue Vorhersagen der Reibung für kleine Werte der lokaler Oberflächen-Steigung erhalten werden können, wohingegen für große Steigungen finite Deformationen berücksichtigt werden sollten. Das zweite Ziel dieser Arbeit ist die Etablierung einer neuen, hybriden (nichtlinearerFiniten-Elemente / linearer Randelemente) -Multiskalenmethode, die die Vorteile beider Verfahren kombiniert. Die vorgestellte Hybrid-Multiskalen-Methode hat sich als geeignetes Werkzeug erwiesen, um den Reibkoeffizienten mit einem angemessenen Genauigkeitsgrad für niedrige Gleitgeschwindigkeiten zu untersuchen; Sie ermöglicht eine schnellere Berechnung des Reibkoeffizienten als das nichtlineare FE-Modell

    Acceleration Methods for Nonlinear Solvers and Application to Fluid Flow Simulations

    Get PDF
    This thesis studies nonlinear iterative solvers for the simulation of Newtonian and non- Newtonian fluid models with two different approaches: Anderson acceleration (AA), an extrapolation technique that accelerates the convergence rate and improves the robustness of fixed-point iterations schemes, and continuous data assimilation (CDA) which drives the approximate solution towards coarse data measurements or observables by adding a penalty term. We analyze the properties of nonlinear solvers to apply the AA technique. We consider the Picard iteration for the Bingham equation which models the motion of viscoplastic materials, and the classical iterated penalty Picard and Arrow-Hurwicz iterations for the incompressible Navier–Stokes equations (NSE) which model the Newtonian fluid flows. All these nonlinear solvers have some drawbacks. They lack robustness, and the required number of iterations for convergence could be large. In this thesis, we show that AA significantly improves the convergence properties of these nonlinear solvers, makes them more robust, and significantly reduces the number of iterations for convergence. We support our accelerated convergence analysis with various numerical tests. We also consider CDA, which is used to improve the convergence of Picard iterations for the first time in literature. We analyze the improved contraction property of CDA applied to the Picard scheme for steady NSE. We give results for several numerical experiments of CDA applied to the Picard iteration to solve 1D, 2D and 3D nonlinear partial differential equations and show that significant reduction in the required number of iterations thanks to CDA

    A Parallel Implementation of the Glowinski-Pironneau Algorithm for the Modified Stokes Problem

    Get PDF
    In this dissertation we consider a parallel implementation of the Glowinski-Pironneau algorithm for the modified Stokes problem. In particular, we motivate this effort by demonstrating the occurrence of the modified Stokes problem in the time dependent viscoelastic Oldroyd flow setting using Saramito\u27s splitting. We then present an analysis of the Glowinski-Pironneau pressure decomposition for the modified Stokes problem - including numerical error estimates. Next we discuss our parallel finite element method implementation of the pressure decomposition approach. Finally, we present numerical results including errors and performance measures. These measures are also compared with results for a coupled velocity-pressure modified Stokes solver using a publicly available parallel solver

    Parallel finite element modeling of the hydrodynamics in agitated tanks

    Get PDF
    Mixing in the transition flow regime -- Technology to mix in transition flow regime -- Methods to characterize mixing hydrodynamics -- Challenges to numerically model transition flow regime in agited tanks -- Transition flow regime in agitated tanks -- Parallel computing -- Numerical modeling of the agitators motion -- Overall methodological approach -- Computational resources -- Program development strategy -- Parallel finite element simulations of incompressible viscous fluid flow by domain decomposition with Lagrange multipliers -- Parallel numerical model -- Parallel implementation -- Three-dimensional benchmark cases -- A parallel finite element sliding mesh technique for the Navier-Stokes equation -- Numerical method -- Parallel implementation -- Numerical examples -- Parallel performance -- Finite element modeling of the laminar and transition flow of the Superblend dual shaft coaxial mixer on parallel computers -- Superblend coaxial mixer configuration -- Numerical model -- Hydrodynamics in Superblend coaxial mixer -- Mixing -- Mixing efficiency -- Parallel finite element solver -- Parallel sliding mesh technique -- Simulation of the hydrodynamics of a stirred tank in the transition regime -- Recommendations for future research -- Parallel algorithms -- Simulation of agited and the transition flow regime

    Simulation of Time-Dependent Viscoelastic Fluid Flows by Spectral Elements

    Get PDF
    The research work reported in this dissertation is aimed to develop efficient and stable numerical schemes in order to obtain accurate numerical solution for viscoelastic fluid flows within the spectral element context. The present research consists in the transformation of a large class of differential constitutive models into an equation where the main variable is the logarithm of the conformation tensor or a quantity related to it in a simple way. Particular cases cover the Oldroyd-B fluid and the FENE-P model. Applying matrix logarithm formulation in the framework of the spectral element method is a new type of approach that according to our knowledge no one has implemented before. The reformulation of the classical constitutive equation using a new variable namely the logarithmic formulation, enforces the eigenvalues of the conformation tensor to remain positive for all steps of the simulation. However, satisfying the symmetric positive definiteness of the conformation tensor during the simulation is the necessary condition for stability; but definitely, it is not the sufficient condition to reach meaningful results. The main effort of this research is devoted to introduce a new algorithm in order to overcome the drawback of direct reformulating the classical constitutive equation to the logarithmic one. To evaluate the capability of the extended matrix logarithm formulation, comprehensive studies have been done based on the linear stability analysis to show the influence of this method on the resulting eigenvalue spectra and explain its success to tackle high Weissenberg numbers. With this new method one can treat high Weissenberg number flows at values of practical interest. One of the worst obstacles for numerical simulation of viscoelastic fluids is the presence of spurious modes during the simulation. At high Weissenberg number, many schemes suffer from instabilities and numerical convergence may not be attainable. This is often attributed to the presence of solution singularities due to the geometry, the dominant non-linear terms in the constitutive equations, or the change of type of the underlying mixed-form differential system. Refining the mesh proved to be not very helpful. In this study, to understand more deeply the mechanism of instability generation a comprehensive study about the growth of spurious modes with time evolution, mesh refinement, boundary conditions and Weissenberg number or any other affected parameters has been performed. Then to get rid of these spurious modes the filter based stabilization of spectral element methods proposed by Boyd was applied with success
    corecore