174 research outputs found

    A Bayesian conjugate gradient method (with Discussion)

    Get PDF
    A fundamental task in numerical computation is the solution of large linear systems. The conjugate gradient method is an iterative method which offers rapid convergence to the solution, particularly when an effective preconditioner is employed. However, for more challenging systems a substantial error can be present even after many iterations have been performed. The estimates obtained in this case are of little value unless further information can be provided about the numerical error. In this paper we propose a novel statistical model for this numerical error set in a Bayesian framework. Our approach is a strict generalisation of the conjugate gradient method, which is recovered as the posterior mean for a particular choice of prior. The estimates obtained are analysed with Krylov subspace methods and a contraction result for the posterior is presented. The method is then analysed in a simulation study as well as being applied to a challenging problem in medical imaging

    Probabilistic Numerical Linear Algebra for Machine Learning

    Get PDF
    Machine learning models are becoming increasingly essential in domains where critical decisions must be made under uncertainty, such as in public policy, medicine or robotics. For a model to be useful for decision-making, it must convey a degree of certainty in its predictions. Bayesian models are well-suited to such settings due to their principled uncertainty quantification, given a set of assumptions about the problem and data-generating process. While in theory, inference in a Bayesian model is fully specified, in practice, numerical approximations have a significant impact on the resulting posterior. Therefore, model-based decisions are not just determined by the data but also by the numerical method. This begs the question of how we can account for the adverse impact of numerical approximations on inference. Arguably, the most common numerical task in scientific computing is the solution of linear systems, which arise in probabilistic inference, graph theory, differential equations and optimization. In machine learning, these systems are typically large-scale, subject to noise and arise from generative processes. These unique characteristics call for specialized solvers. In this thesis, we propose a class of probabilistic linear solvers, which infer the solution to a linear system and can be interpreted as learning algorithms themselves. Importantly, they can leverage problem structure and propagate their error to the prediction of the underlying probabilistic model. Next, we apply such solvers to accelerate Gaussian process inference. While Gaussian processes are a principled and flexible model class, for large datasets inference is computationally prohibitive both in time and memory due to the required computations with the kernel matrix. We show that by approximating the posterior with a probabilistic linear solver, we can invest an arbitrarily small amount of computation and still obtain a provably coherent prediction that quantifies uncertainty exactly. Finally, we demonstrate that Gaussian process hyperparameter optimization can similarly be accelerated by leveraging structural prior knowledge in the model via preconditioning of iterative methods. Combined with modern parallel hardware, this enables training Gaussian process models on datasets with hundreds of thousands of data points. In summary, we demonstrate that interpreting numerical methods in linear algebra as probabilistic learning algorithms unlocks significant performance improvements for Gaussian process models. Crucially, we show how to account for the impact of numerical approximations on model predictions via uncertainty quantification. This enables an explicit trade-off between computational resources and confidence in a prediction. The techniques developed in this thesis have advanced the understanding of probabilistic linear solvers, they have shifted the goalposts of what can be expected from Gaussian process approximations and they have defined the way large-scale Gaussian process hyperparameter optimization is performed in GPyTorch, arguably the most popular library for Gaussian processes in Python

    Greedy low-rank algorithm for spatial connectome regression

    Get PDF
    Recovering brain connectivity from tract tracing data is an important computational problem in the neurosciences. Mesoscopic connectome reconstruction was previously formulated as a structured matrix regression problem (Harris et al., 2016), but existing techniques do not scale to the whole-brain setting. The corresponding matrix equation is challenging to solve due to large scale, ill-conditioning, and a general form that lacks a convergent splitting. We propose a greedy low-rank algorithm for connectome reconstruction problem in very high dimensions. The algorithm approximates the solution by a sequence of rank-one updates which exploit the sparse and positive definite problem structure. This algorithm was described previously (Kressner and Sirkovi\'c, 2015) but never implemented for this connectome problem, leading to a number of challenges. We have had to design judicious stopping criteria and employ efficient solvers for the three main sub-problems of the algorithm, including an efficient GPU implementation that alleviates the main bottleneck for large datasets. The performance of the method is evaluated on three examples: an artificial "toy" dataset and two whole-cortex instances using data from the Allen Mouse Brain Connectivity Atlas. We find that the method is significantly faster than previous methods and that moderate ranks offer good approximation. This speedup allows for the estimation of increasingly large-scale connectomes across taxa as these data become available from tracing experiments. The data and code are available online
    corecore