239 research outputs found

    Precomputed Clustering for Movie Recommendation System in Real Time

    Get PDF
    A recommendation system delivers customized data (articles, news, images, music, movies, etc.) to its users. As the interest of recommendation systems grows, we started working on the movie recommendation systems. Most research efforts in the fields of movie recommendation system are focusing on discovering the most relevant features from users, or seeking out users who share same tastes as that of the given user as well as recommending the movies according to the liking of these sought users or seeking out users who share a connection with other people (friends, classmates, colleagues, etc.) and make recommendations based on those related people’s tastes. However, little research has focused on recommending movies based on the movie’s features. In this paper, we present a novel idea that applies machine learning techniques to construct a cluster for the movie by implementing a distance matrix based on the movie features and then make movie recommendation in real time. We implement some different clustering methods and evaluate their performance in a real movie forum website owned by one of our authors. This idea can also be used in other types of recommendation systems such as music, news, and articles

    Scalable and interpretable product recommendations via overlapping co-clustering

    Full text link
    We consider the problem of generating interpretable recommendations by identifying overlapping co-clusters of clients and products, based only on positive or implicit feedback. Our approach is applicable on very large datasets because it exhibits almost linear complexity in the input examples and the number of co-clusters. We show, both on real industrial data and on publicly available datasets, that the recommendation accuracy of our algorithm is competitive to that of state-of-art matrix factorization techniques. In addition, our technique has the advantage of offering recommendations that are textually and visually interpretable. Finally, we examine how to implement our technique efficiently on Graphical Processing Units (GPUs).Comment: In IEEE International Conference on Data Engineering (ICDE) 201

    Fast Differentially Private Matrix Factorization

    Full text link
    Differentially private collaborative filtering is a challenging task, both in terms of accuracy and speed. We present a simple algorithm that is provably differentially private, while offering good performance, using a novel connection of differential privacy to Bayesian posterior sampling via Stochastic Gradient Langevin Dynamics. Due to its simplicity the algorithm lends itself to efficient implementation. By careful systems design and by exploiting the power law behavior of the data to maximize CPU cache bandwidth we are able to generate 1024 dimensional models at a rate of 8.5 million recommendations per second on a single PC

    Density-based User Representation through Gaussian Process Regression for Multi-interest Personalized Retrieval

    Full text link
    Accurate modeling of the diverse and dynamic interests of users remains a significant challenge in the design of personalized recommender systems. Existing user modeling methods, like single-point and multi-point representations, have limitations w.r.t. accuracy, diversity, computational cost, and adaptability. To overcome these deficiencies, we introduce density-based user representations (DURs), a novel model that leverages Gaussian process regression for effective multi-interest recommendation and retrieval. Our approach, GPR4DUR, exploits DURs to capture user interest variability without manual tuning, incorporates uncertainty-awareness, and scales well to large numbers of users. Experiments using real-world offline datasets confirm the adaptability and efficiency of GPR4DUR, while online experiments with simulated users demonstrate its ability to address the exploration-exploitation trade-off by effectively utilizing model uncertainty.Comment: 16 pages, 5 figure

    Graph Neural Networks for E-Learning Recommendation Systems

    Get PDF
    This paper presents a novel recommendation system for e-learning platforms. Recent years have seen the emergence of graph neural networks (GNNs) for learning representations over graph-structured data. Due to their promising performance in semi-supervised learning over graphs and in recommendation systems, we employ them in e-learning platforms for user profiling and content profiling. Affinity graphs between users and learning resources are constructed in this study, and GNNs are employed to generate recommendations over these affinity graphs. In the context of e-learning, our proposed approach outperforms multiple different content-based and collaborative filtering baselines

    Data Privacy Preservation in Collaborative Filtering Based Recommender Systems

    Get PDF
    This dissertation studies data privacy preservation in collaborative filtering based recommender systems and proposes several collaborative filtering models that aim at preserving user privacy from different perspectives. The empirical study on multiple classical recommendation algorithms presents the basic idea of the models and explores their performance on real world datasets. The algorithms that are investigated in this study include a popularity based model, an item similarity based model, a singular value decomposition based model, and a bipartite graph model. Top-N recommendations are evaluated to examine the prediction accuracy. It is apparent that with more customers\u27 preference data, recommender systems can better profile customers\u27 shopping patterns which in turn produces product recommendations with higher accuracy. The precautions should be taken to address the privacy issues that arise during data sharing between two vendors. Study shows that matrix factorization techniques are ideal choices for data privacy preservation by their nature. In this dissertation, singular value decomposition (SVD) and nonnegative matrix factorization (NMF) are adopted as the fundamental techniques for collaborative filtering to make privacy-preserving recommendations. The proposed SVD based model utilizes missing value imputation, randomization technique, and the truncated SVD to perturb the raw rating data. The NMF based models, namely iAux-NMF and iCluster-NMF, take into account the auxiliary information of users and items to help missing value imputation and privacy preservation. Additionally, these models support efficient incremental data update as well. A good number of online vendors allow people to leave their feedback on products. It is considered as users\u27 public preferences. However, due to the connections between users\u27 public and private preferences, if a recommender system fails to distinguish real customers from attackers, the private preferences of real customers can be exposed. This dissertation addresses an attack model in which an attacker holds real customers\u27 partial ratings and tries to obtain their private preferences by cheating recommender systems. To resolve this problem, trustworthiness information is incorporated into NMF based collaborative filtering techniques to detect the attackers and make reasonably different recommendations to the normal users and the attackers. By doing so, users\u27 private preferences can be effectively protected

    Movies emotional analysis using textual contents

    Get PDF
    In this paper, we use movies and series subtitles and applied text mining and Natural Language Processing methods to evaluate emotions in videos. Three different word lexicons were used and one of the outcomes of this research is the generation of a secondary dataset with more than 3658 records which can be used for other data analysis and data mining research. We used our secondary dataset to find and display correlations between different emotions on the videos and the correlation between emotions on the movies and users’ scores on IMDb using the Pearson correlation method and found some statistically significant correlations
    corecore