1,199 research outputs found

    Spatial Characteristics of Distortion Radiated from Antenna Arrays with Transceiver Nonlinearities

    Full text link
    The distortion from massive MIMO (multiple-input--multiple-output) base stations with nonlinear amplifiers is studied and its radiation pattern is derived. The distortion is analyzed both in-band and out-of-band. By using an orthogonal Hermite representation of the amplified signal, the spatial cross-correlation matrix of the nonlinear distortion is obtained. It shows that, if the input signal to the amplifiers has a dominant beam, the distortion is beamformed in the same way as that beam. When there are multiple beams without any one being dominant, it is shown that the distortion is practically isotropic. The derived theory is useful to predict how the nonlinear distortion will behave, to analyze the out-of-band radiation, to do reciprocity calibration, and to schedule users in the frequency plane to minimize the effect of in-band distortion

    PAR-Aware Large-Scale Multi-User MIMO-OFDM Downlink

    Full text link
    We investigate an orthogonal frequency-division multiplexing (OFDM)-based downlink transmission scheme for large-scale multi-user (MU) multiple-input multiple-output (MIMO) wireless systems. The use of OFDM causes a high peak-to-average (power) ratio (PAR), which necessitates expensive and power-inefficient radio-frequency (RF) components at the base station. In this paper, we present a novel downlink transmission scheme, which exploits the massive degrees-of-freedom available in large-scale MU-MIMO-OFDM systems to achieve low PAR. Specifically, we propose to jointly perform MU precoding, OFDM modulation, and PAR reduction by solving a convex optimization problem. We develop a corresponding fast iterative truncation algorithm (FITRA) and show numerical results to demonstrate tremendous PAR-reduction capabilities. The significantly reduced linearity requirements eventually enable the use of low-cost RF components for the large-scale MU-MIMO-OFDM downlink.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Time Reversal with Post-Equalization for OFDM without CP in Massive MIMO

    Full text link
    This paper studies the possibility of eliminating the redundant cyclic prefix (CP) of orthogonal frequency division multiplexing (OFDM) in massive multiple-input multiple-output systems. The absence of CP increases the bandwidth efficiency in expense of intersymbol interference (ISI) and intercarrier interference (ICI). It is known that in massive MIMO, different types of interference fade away as the number of base station (BS) antennas tends to infinity. In this paper, we investigate if the channel distortions in the absence of CP are averaged out in the large antenna regime. To this end, we analytically study the performance of the conventional maximum ratio combining (MRC) and realize that there always remains some residual interference leading to saturation of signal to interference (SIR). This saturation of SIR is quantified through mathematical equations. Moreover, to resolve the saturation problem, we propose a technique based on time-reversal MRC with zero forcing multiuser detection (TR-ZF). Thus, the SIR of our proposed TR-ZF does not saturate and is a linear function of the number of BS antennas. We also show that TR-ZF only needs one OFDM demodulator per user irrespective of the number of BS antennas; reducing the BS signal processing complexity significantly. Finally, we corroborate our claims as well as analytical results through simulations.Comment: 7 pages, 3 figure
    corecore