194 research outputs found

    Precoded Chebyshev-NLMS based pre-distorter for nonlinear LED compensation in NOMA-VLC

    Get PDF
    Visible light communication (VLC) is one of the main technologies driving the future 5G communication systems due to its ability to support high data rates with low power consumption, thereby facilitating high speed green communications. To further increase the capacity of VLC systems, a technique called non-orthogonal multiple access (NOMA) has been suggested to cater to increasing demand for bandwidth, whereby users' signals are superimposed prior to transmission and detected at each user equipment using successive interference cancellation (SIC). Some recent results on NOMA exist which greatly enhance the achievable capacity as compared to orthogonal multiple access techniques. However, one of the performance-limiting factors affecting VLC systems is the nonlinear characteristics of a light emitting diode (LED). This paper considers the nonlinear LED characteristics in the design of pre-distorter for cognitive radio inspired NOMA in VLC, and proposes singular value decomposition based Chebyshev precoding to improve performance of nonlinear multiple-input multiple output NOMA-VLC. A novel and generalized power allocation strategy is also derived in this work, which is valid even in scenarios when users experience similar channels. Additionally, in this work, analytical upper bounds for the bit error rate of the proposed detector are derived for square MM-quadrature amplitude modulation.Comment: R. Mitra and V. Bhatia are with Indian Institute of Technology Indore, Indore-453552, India, Email:[email protected], [email protected]. This work was submitted to IEEE Transactions on Communications on October 26, 2016, decisioned on March 3, 2017, and revised on April 25, 2017, and is currently under review in IEEE Transactions on Communication

    Non-orthogonal transmission techniques for multibeam satellite systems

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Non-orthogonal transmission is a promising technology enabler to meet the requirements of 5G communication systems. Seminal papers demonstrated that non-orthogonal multiplexing techniques outperform orthogonal schemes in terms of capacity, latency, and user fairness. Since it is envisioned that satellites will be an integral component of the 5G infrastructure, it is worth studying how satellite communication systems can benefit from the application of non-orthogonal transmission schemes as well. Contrary to common perception, current communications through a satellite present a different architecture and face different impairments than those in the wireless terrestrial links. In particular, this work aims to describe different non-orthogonal schemes that are suitable for the forward link (i.e., satellite to user). In contrast with the return link of the satellite (i.e., user to satellite), where the use of non-orthogonal transmission schemes has been widely studied, less effort has been devoted to the forward link. In light of this, this article provides an overview and a novel taxonomy that is based on the forward link of different non-orthogonal multibeam transmission schemes. Finally, guidelines that open new avenues for research in this topic are provided.Peer ReviewedPostprint (author's final draft

    Multiple Access in Aerial Networks: From Orthogonal and Non-Orthogonal to Rate-Splitting

    Get PDF
    Recently, interest on the utilization of unmanned aerial vehicles (UAVs) has aroused. Specifically, UAVs can be used in cellular networks as aerial users for delivery, surveillance, rescue search, or as an aerial base station (aBS) for communication with ground users in remote uncovered areas or in dense environments requiring prompt high capacity. Aiming to satisfy the high requirements of wireless aerial networks, several multiple access techniques have been investigated. In particular, space-division multiple access(SDMA) and power-domain non-orthogonal multiple access (NOMA) present promising multiplexing gains for aerial downlink and uplink. Nevertheless, these gains are limited as they depend on the conditions of the environment. Hence, a generalized scheme has been recently proposed, called rate-splitting multiple access (RSMA), which is capable of achieving better spectral efficiency gains compared to SDMA and NOMA. In this paper, we present a comprehensive survey of key multiple access technologies adopted for aerial networks, where aBSs are deployed to serve ground users. Since there have been only sporadic results reported on the use of RSMA in aerial systems, we aim to extend the discussion on this topic by modelling and analyzing the weighted sum-rate performance of a two-user downlink network served by an RSMA-based aBS. Finally, related open issues and future research directions are exposed.Comment: 16 pages, 6 figures, submitted to IEEE Journa

    Energy-efficient non-orthogonal multiple access for wireless communication system

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as a potential solution for enhancing the throughput of next-generation wireless communications. NOMA is a potential option for 5G networks due to its superiority in providing better spectrum efficiency (SE) compared to orthogonal multiple access (OMA). From the perspective of green communication, energy efficiency (EE) has become a new performance indicator. A systematic literature review is conducted to investigate the available energy efficient approach researchers have employed in NOMA. We identified 19 subcategories related to EE in NOMA out of 108 publications where 92 publications are from the IEEE website. To help the reader comprehend, a summary for each category is explained and elaborated in detail. From the literature review, it had been observed that NOMA can enhance the EE of wireless communication systems. At the end of this survey, future research particularly in machine learning algorithms such as reinforcement learning (RL) and deep reinforcement learning (DRL) for NOMA are also discussed

    Investigation on Evolving Single-Carrier NOMA into Multi-Carrier NOMA in 5G

    Full text link
    © 2013 IEEE. Non-orthogonal multiple access (NOMA) is one promising technology, which provides high system capacity, low latency, and massive connectivity, to address several challenges in the fifth-generation wireless systems. In this paper, we first reveal that the NOMA techniques have evolved from single-carrier NOMA (SC-NOMA) into multi-carrier NOMA (MC-NOMA). Then, we comprehensively investigated on the basic principles, enabling schemes and evaluations of the two most promising MC-NOMA techniques, namely sparse code multiple access (SCMA) and pattern division multiple access (PDMA). Meanwhile, we consider that the research challenges of SCMA and PDMA might be addressed with the stimulation of the advanced and matured progress in SC-NOMA. Finally, yet importantly, we investigate the emerging applications, and point out the future research trends of the MC-NOMA techniques, which could be straightforwardly inspired by the various deployments of SC-NOMA

    Performance Enhancement Using NOMA-MIMO for 5G Networks

    Get PDF
    The integration of MIMO and NOMA technologies addresses key challenges in 5G and beyond, such as connectivity, latency, and dependability. However, resolving these issues, especially in MIMO-enabled 5G networks, required additional research. This involved optimizing parameters like bit error rate, downlink spectrum efficiency, average capacity rate, and uplink transmission outage probability. The model employed Quadrature Phase Shift Keying modulation on selected frequency channels, accommodating diverse user characteristics. Evaluation showed that MIMO-NOMA significantly improved bit error rate and transmitting power for the best user in download transmission. For uplink transmission, there was an increase in the average capacity rate and a decrease in outage probability for the best user. Closed-form formulas for various parameters in both downlink and uplink NOMA, with and without MIMO, were derived. Overall, adopting MIMO-NOMA led to a remarkable performance improvement for all users, even in challenging conditions like interference or fading channels

    State of the Art, Taxonomy, and Open Issues on Cognitive Radio Networks with NOMA

    Get PDF
    The explosive growth of mobile devices and the rapid increase of wideband wireless services call for advanced communication techniques that can achieve high spectral efficiency and meet the massive connectivity requirement. Cognitive radio (CR) and non-orthogonal multiple access (NOMA) are envisioned to be important solutions for the fifth generation wireless networks. Integrating NOMA techniques into CR networks (CRNs) has the tremendous potential to improve spectral efficiency and increase the system capacity. However, there are many technical challenges due to the severe interference caused by using NOMA. Many efforts have been made to facilitate the application of NOMA into CRNs and to investigate the performance of CRNs with NOMA. This article aims to survey the latest research results along this direction. A taxonomy is devised to categorize the literature based on operation paradigms, enabling techniques, design objectives and optimization characteristics. Moreover, the key challenges are outlined to provide guidelines for the domain researchers and designers to realize CRNs with NOMA. Finally, the open issues are discussed.Comment: This paper has been accepted by IEEE Wireless Communications Magazine. Pages 16, Figures
    corecore