652 research outputs found

    A limited feedback scheme based on spatially correlated channels for coordinated multipoint systems

    Get PDF
    High spectral efficiency can be achieved in the downlink of multi-antenna coordinated multi-point systems provided that the multiuser interference is appropriately managed at the transmitter side. For this sake, downlink channel information needs to be sent back by the users, thus reducing the rate available at the uplink channel. The amount and type of feedback information required has been extensively studied and many limited feedback schemes have been proposed lately. A common pattern to all of them is that achieving low rates of feedback information is possible at the cost of increasing complexity at the user side and, sometimes, assuming that some statistics of the channel are known. In this article, we propose a simple and versatile limited feedback scheme that exploits the spatial correlation at each multi-antenna base station (BS) without requiring any previous statistical information of the channel and without adding significant computational complexity. It is based on the separate quantization of the channel impulse response modulus and phase and it shows better mean square error performance than the standard scheme based on quantization of real and imaginary parts. In order to evaluate the performance of the downlink regarding multiuser interference management, different precoding techniques at the BSs, such as zero-forcing (ZF), Tomlinson-Harashima precoding (THP) and lattice reduction Tomlinson- Harashima precoding (LRTHP), have been evaluated. Simulations results show that LRTHP and THP present a higher robustness than ZF precoding against channel quantization errors but at the cost of a higher complexity at the BS. Regarding sum-capacity and bit error rate performances, our versatile scheme achieves better results than the standard one in the medium and high SNR regime, that is, in the region where quantization errors are dominant against noise, for the same feedback cost measured in bits per user

    Feedback of channel state information in multi-antenna systems based on quantization of channel Gram matrices

    Get PDF
    This dissertation deals with the proper design of efficient feedback strategies for Multiple-Input Multiple-Output (MIMO) communication systems. MIMO systems outperform single antenna systems in terms of achievable throughput and are more resilient to noise and interference, which are becoming the limiting factors in the current and future communications. Apart from the clear performance advantages, MIMO systems introduce an additional complexity factor, since they require knowledge of the propagation channel in order to be able to adapt the transmission to the propagation channel’s characteristics and achieve optimum performance. This channel knowledge, also known as Channel State Information (CSI), is estimated at the receiver and sent to the transmitter through a limited feedback link. In this dissertation, first, the minimum channel information necessary at the transmitter for the optimum precoding design is identified. This minimum information for the optimum design of the system corresponds to the channel Gram matrix. It is essential for the design of optimized systems to avoid the transmission of redundant feedback information. Following this idea, a quantization algorithm that exploits the differential geometry of the set of Gram matrices and the correlation in time present in most propagation channels is developed in order to greatly improve the feedback performance. This scheme is applied first to single-user MIMO communications, then to some particular multiuser scenarios, and finally it is extended to general multiuser broadcast communications. To conclude, the feedback link sizing is studied. An analysis of the tradeoff between size of the forward link and size of the feedback link isformulated and the radio resource allocation problem, in terms of transmission energy, time, and bandwidth of the forward and feedback links is presented.En un mundo cada vez más interconectado, donde hay una clara tendencia hacia un mayor número de comunicaciones inalámbricas simultáneas (comunicaciones M2M: Machine to Machine, redes de sensores, etc.) y en el que las necesidades de capacidad de transmisión de los enlaces de comunicaciones aumentan de manera vertiginosa (audio, video, contenidos multimedia, alta definición, etc.) el problema de la interferencia se convierte en uno de los factores limitadores de los enlaces junto con los desvanecimientos del nivel de señal y las pérdidas de propagación. Por este motivo los sistemas que emplean múltiples antenas tanto en la transmisión como en la recepción (los llamados sistemas MIMO: Multiple-Input Multiple-Output) se presentan como una de las soluciones más interesantes para satisfacer los crecientes requisitos de capacidad y comportamiento relativo a interferencias. Los sistemas MIMO permiten obtener un mejor rendimiento en términos de tasa de transmisión de información y a su vez son más robustos frente a ruido e interferencias en el canal. Esto significa que pueden usarse para aumentar la capacidad de los enlaces de comunicaciones actuales o para reducir drásticamente el consumo energético manteniendo las mismas prestaciones. Por otro lado, además de estas claras ventajas, los sistemas MIMO introducen un punto de complejidad adicional puesto que para aprovechar al máximo las posibilidades de estos sistemas es necesario tener conocimiento de la información de estado del canal (CSI: Channel State Information) tanto en el transmisor como en el receptor. Esta CSI se obtiene mediante estimación de canal en el receptor y posteriormente se envía al transmisor a través de un canal de realimentación. Esta tesis trata sobre el diseño del canal de realimentación para la transmisión de CSI, que es un elemento fundamental de los sistemas de comunicaciones del presente y del futuro. Las técnicas de transmisión que consideran activamente el efecto de la interferencia y el ruido requieren adaptarse al canal y, para ello, la realimentación de CSI es necesaria. En esta tesis se identifica, en primer lugar, la mínima información sobre el estado del canal necesaria para implementar un diseño óptimo en el transmisor, con el fin de evitar transmitir información redundante y obtener así un sistema más eficiente. Esta información es la matriz de Gram del canal MIMO. Seguidamente, se desarrolla un algoritmo de cuantificación adaptado a la geometría diferencial del conjunto que contiene la información a cuantificar y que además aprovecha la correlación temporal existente en los canales de propagación inalámbricos. Este algoritmo se implementa y evalúa primero en comunicaciones MIMO punto a punto entre dos usuarios, después se implementa para algunos casos particulares con múltiples usuarios, y finalmente se amplía para el caso general de sistemas broadcast multi-usuario. Adicionalmente, esta tesis también estudia y optimiza el dimensionamiento del canal de realimentación en función de la cantidad de recursos radio disponibles, en términos de ancho de banda, tiempo y potencia de transmisión. Para ello presenta el problema de la distribución óptima de dichos recursos radio entre el enlace de transmisión de datos y el enlace de realimentación para transmisión de información sobre estado del canal como un problema de optimización

    A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    IEEE Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area
    corecore