72 research outputs found

    On the Transport Capability of LAN Cables in All-Analog MIMO-RoC Fronthaul

    Full text link
    Centralized Radio Access Network (C-RAN) architecture is the only viable solution to handle the complex interference scenario generated by massive antennas and small cells deployment as required by next generation (5G) mobile networks. In conventional C-RAN, the fronthaul links used to exchange the signal between Base Band Units (BBUs) and Remote Antenna Units (RAUs) are based on digital baseband (BB) signals over optical fibers due to the huge bandwidth required. In this paper we evaluate the transport capability of copper-based all-analog fronthaul architecture called Radio over Copper (RoC) that leverages on the pre-existing LAN cables that are already deployed in buildings and enterprises. In particular, the main contribution of the paper is to evaluate the number of independent BB signals for multiple antennas system that can be transported over multi-pair Cat-5/6/7 cables under a predefined fronthauling transparency condition in terms of maximum BB signal degradation. The MIMO-RoC proves to be a complementary solution to optical fiber for the last 200m toward the RAUs, mostly to reuse the existing LAN cables and to power-supply the RAUs over the same cable

    Analog MIMO Radio-over-Copper: Prototype and Preliminary Experimental Results

    Full text link
    Analog Multiple-Input Multiple-Output Radio-over-Copper (A-MIMO-RoC) is an effective all-analog FrontHaul (FH) architecture that exploits any pre-existing Local Area Network (LAN) cabling infrastructure of buildings to distribute Radio-Frequency (RF) signals indoors. A-MIMO-RoC, by leveraging a fully analog implementation, completely avoids any dedicated digital interface by using a transparent end-to-end system, with consequent latency, bandwidth and cost benefits. Usually, LAN cables are exploited mainly in the low-frequency spectrum portion, mostly due to the moderate cable attenuation and crosstalk among twisted-pairs. Unlike current systems based on LAN cables, the key feature of the proposed platform is to exploit more efficiently the huge bandwidth capability offered by LAN cables, that contain 4 twisted-pairs reaching up to 500 MHz bandwidth/pair when the length is below 100 m. Several works proposed numerical simulations that assert the feasibility of employing LAN cables for indoor FH applications up to several hundreds of MHz, but an A-MIMO-RoC experimental evaluation is still missing. Here, we present some preliminary results obtained with an A-MIMO-RoC prototype made by low-cost all-analog/all-passive devices along the signal path. This setup demonstrates experimentally the feasibility of the proposed analog relaying of MIMO RF signals over LAN cables up to 400 MHz, thus enabling an efficient exploitation of the LAN cables transport capabilities for 5G indoor applications.Comment: Part of this work has been accepted as a conference publication to ISWCS 201

    enhancing indoor coverage by multi pairs copper cables the analog mimo radio over copper architecture

    Get PDF
    Nowadays, the majority of indoor coverage issues arise from networks that are mainly designed for outdoor scenarios. Outdoor networks, somewhat uncontrollably, may penetrate indoors with the consequence of coverage holes and outage issues, hence reducing network performances. Moreover, the ever-growing number of devices expected for 5G worsens this situation, calling for novel bandwidth-efficient, low-latency and cost-effective solutions for indoor wireless coverage. This is the focus of this article, which summarizes the content of my Ph.D. thesis by presenting an analog Centralized Radio Access Network (C-RAN) architecture augmented by copper-cable, possibly pre-existing, to provide dense coverage inside buildings. This fronthaul architecture, referred to as Analog MIMO Radio-over-Copper (AMIMO-RoC), is an extreme RAN functional-split-option: the all-analog Remote Radio Units take the form of tiny, simple and cheap in-home devices, and Base Band Unit includes also signals' digitization. The A-MIMO-RoC architecture is introduced in this article starting from demonstrating its theoretical feasibility. Then, the origin and evolution of A-MIMO-RoC are described step-by-step by briefly going through previous works based on numerical analysis and simulations results. Finally, the overall discussion is complemented by results obtained with a prototype platform, which experimentally prove the capability of A-MIMO-RoC to extend indoor coverage over the last 100–200 m. Prototype results thus confirm that the proposed A-MIMO-RoC architecture is a valid solution towards the design of dedicated 5G indoor wireless systems for the billions of buildings which nowadays still suffer from severe indoor coverage issues

    Atomic Norm decomposition for sparse model reconstruction applied to positioning and wireless communications

    Get PDF
    This thesis explores the recovery of sparse signals, arising in the wireless communication and radar system fields, via atomic norm decomposition. Particularly, we focus on compressed sensing gridless methodologies, which avoid the always existing error due to the discretization of a continuous space in on-grid methods. We define the sparse signal by means of a linear combination of so called atoms defined in a continuous parametrical atom set with infinite cardinality. Those atoms are fully characterized by a multi-dimensional parameter containing very relevant information about the application scenario itself. Also, the number of composite atoms is much lower than the dimension of the problem, which yields sparsity. We address a gridless optimization solution enforcing sparsity via atomic norm minimization to extract the parameters that characterize the atom from an observed measurement of the model, which enables model recovery. We also study a machine learning approach to estimate the number of composite atoms that construct the model, given that in certain scenarios this number is unknown. The applications studied in the thesis lay on the field of wireless communications, particularly on MIMO mmWave channels, which due to their natural properties can be modeled as sparse. We apply the proposed methods to positioning in automotive pulse radar working in the mmWave range, where we extract relevant information such as angle of arrival (AoA), distance and velocity from the received echoes of objects or targets. Next we study the design of a hybrid precoder for mmWave channels which allows the reduction of hardware cost in the system by minimizing as much as possible the number of required RF chains. Last, we explore full channel estimation by finding the angular parameters that model the channel. For all the applications we provide a numerical analysis where we compare our proposed method with state-of-the-art techniques, showing that our proposal outperforms the alternative methods.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Juan José Murillo Fuentes.- Secretario: Pablo Martínez Olmos.- Vocal: David Luengo Garcí
    • …
    corecore