4 research outputs found

    Enabling Efficient Communications Over Millimeter Wave Massive MIMO Channels Using Hybrid Beamforming

    Get PDF
    The use of massive multiple-input multiple-output (MIMO) over millimeter wave (mmWave) channels is the new frontier for fulfilling the exigent requirements of next-generation wireless systems and solving the wireless network impending crunch. Massive MIMO systems and mmWave channels offer larger numbers of antennas, higher carrier frequencies, and wider signaling bandwidths. Unleashing the full potentials of these tremendous degrees of freedom (dimensions) hinges on the practical deployment of those technologies. Hybrid analog and digital beamforming is considered as a stepping-stone to the practical deployment of mmWave massive MIMO systems since it significantly reduces their operating and implementation costs, energy consumption, and system design complexity. The prevalence of adopting mmWave and massive MIMO technologies in next-generation wireless systems necessitates developing agile and cost-efficient hybrid beamforming solutions that match the various use-cases of these systems. In this thesis, we propose hybrid precoding and combining solutions that are tailored to the needs of these specific cases and account for the main limitations of hybrid processing. The proposed solutions leverage the sparsity and spatial correlation of mmWave massive MIMO channels to reduce the feedback overhead and computational complexity of hybrid processing. Real-time use-cases of next-generation wireless communication, including connected cars, virtual-reality/augmented-reality, and high definition video transmission, require high-capacity and low-latency wireless transmission. On the physical layer level, this entails adopting near capacity-achieving transmission schemes with very low computational delay. Motivated by this, we propose low-complexity hybrid precoding and combining schemes for massive MIMO systems with partially and fully-connected antenna array structures. Leveraging the disparity in the dimensionality of the analog and the digital processing matrices, we develop a two-stage channel diagonalization design approach in order to reduce the computational complexity of the hybrid precoding and combining while maintaining high spectral efficiency. Particularly, the analog processing stage is designed to maximize the antenna array gain in order to avoid performing computationally intensive operations such as matrix inversion and singular value decomposition in high dimensions. On the other hand, the low-dimensional digital processing stage is designed to maximize the spectral efficiency of the systems. Computational complexity analysis shows that the proposed schemes offer significant savings compared to prior works where asymptotic computational complexity reductions ranging between 80%80\% and 98%98\%. Simulation results validate that the spectral efficiency of the proposed schemes is near-optimal where in certain scenarios the signal-to-noise-ratio (SNR) gap to the optimal fully-digital spectral efficiency is less than 11 dB. On the other hand, integrating mmWave and massive MIMO into the cellular use-cases requires adopting hybrid beamforming schemes that utilize limited channel state information at the transmitter (CSIT) in order to adapt the transmitted signals to the current channel. This is so mainly because obtaining perfect CSIT in frequency division duplexing (FDD) architecture, which dominates the cellular systems, poses serious concerns due to its large training and excessive feedback overhead. Motivated by this, we develop low-overhead hybrid precoding algorithms for selecting the baseband digital and radio frequency (RF) analog precoders from statistically skewed DFT-based codebooks. The proposed algorithms aim at maximizing the spectral efficiency based on minimizing the chordal distance between the optimal unconstrained precoder and the hybrid beamformer and maximizing the signal to interference noise ratio for the single-user and multi-user cases, respectively. Mathematical analysis shows that the proposed algorithms are asymptotically optimal as the number of transmit antennas goes to infinity and the mmWave channel has a limited number of paths. Moreover, it shows that the performance gap between the lower and upper bounds depends heavily on how many DFT columns are aligned to the largest eigenvectors of the transmit antenna array response of the mmWave channel or equivalently the transmit channel covariance matrix when only the statistical channel knowledge is available at the transmitter. Further, we verify the performance of the proposed algorithms numerically where the obtained results illustrate that the spectral efficiency of the proposed algorithms can approach that of the optimal precoder in certain scenarios. Furthermore, these results illustrate that the proposed hybrid precoding schemes have superior spectral efficiency performance while requiring lower (or at most comparable) channel feedback overhead in comparison with the prior art

    Reduced complexity detection for massive MIMO-OFDM wireless communication systems

    Get PDF
    PhD ThesisThe aim of this thesis is to analyze the uplink massive multiple-input multipleoutput with orthogonal frequency-division multiplexing (MIMO-OFDM) communication systems and to design a receiver that has improved performance with reduced complexity. First, a novel receiver is proposed for coded massive MIMO-OFDM systems utilizing log-likelihood ratios (LLRs) derived from complex ratio distributions to model the approximate effective noise (AEN) probability density function (PDF) at the output of a zero-forcing equalizer (ZFE). These LLRs are subsequently used to improve the performance of the decoding of low-density parity-check (LDPC) codes and turbo codes. The Neumann large matrix approximation is employed to simplify the matrix inversion in deriving the PDF. To verify the PDF of the AEN, Monte-Carlo simulations are used to demonstrate the close-match fitting between the derived PDF and the experimentally obtained histogram of the noise in addition to the statistical tests and the independence verification. In addition, complexity analysis of the LLR obtained using the newly derived noise PDF is considered. The derived LLR can be time consuming when the number of receive antennas is very large in massive MIMO-OFDM systems. Thus, a reduced complexity approximation is introduced to this LLR using Newton’s interpolation with different orders and the results are compared to exact simulations. Further simulation results over time-flat frequency selective multipath fading channels demonstrated improved performance over equivalent systems using the Gaussian approximation for the PDF of the noise. By utilizing the PDF of the AEN, the PDF of the signal-to-noise ratio (SNR) is obtained. Then, the outage probability, the closed-form capacity and three approximate expressions for the channel capacity are derived based on that PDF. The system performance is further investigated by exploiting the PDF of the AEN to derive the bit error rate (BER) for the massive MIMO-OFDM system with different M-ary modulations. Then, the pairwise error probability (PEP) is derived to obtain the upper-bounds for the convolutionally coded and turbo coded massive MIMO-OFDM systems for different code generators and receive antennas. Furthermore, the effect of the fixed point data representation on the performance of the massive MIMO-OFDM systems is investigated using reduced detection implementations for MIMO detectors. The motivation for the fixed point analysis is the need for a reduced complexity detector to be implemented as an optimum massive MIMO detector with low precision. Different decomposition schemes are used to build the linear detector based on the IEEE 754 standard in addition to a user-defined precision for selected detectors. Simulations are used to demonstrate the behaviour of several matrix inversion schemes under reduced bit resolution. The numerical results demonstrate improved performance when using QR-factorization and pivoted LDLT decomposition schemes at reduced precision.Iraqi Government and the Iraqi Ministry of Higher Education and Scientific researc

    Precoder design and convergence analysis of MIMO systems with Krylov subspace receivers

    No full text
    This paper studies the design and analysis of large multiple-input multiple-output (MIMO) systems with linear precoding and Krylov subspace receivers. We design precoders that can improve performance with low-rank receivers. We then introduce a tool based on potential theory to analyze the convergence behavior of the mean-squared error (MSE). The effectiveness of the proposed precoder and the superexponential convergence of the MSE are demonstrated1
    corecore