253 research outputs found

    Linear Precoders for Non-Regenerative Asymmetric Two-way Relaying in Cellular Systems

    Full text link
    Two-way relaying (TWR) reduces the spectral-efficiency loss caused in conventional half-duplex relaying. TWR is possible when two nodes exchange data simultaneously through a relay. In cellular systems, data exchange between base station (BS) and users is usually not simultaneous e.g., a user (TUE) has uplink data to transmit during multiple access (MAC) phase, but does not have downlink data to receive during broadcast (BC) phase. This non-simultaneous data exchange will reduce TWR to spectrally-inefficient conventional half-duplex relaying. With infrastructure relays, where multiple users communicate through a relay, a new transmission protocol is proposed to recover the spectral loss. The BC phase following the MAC phase of TUE is now used by the relay to transmit downlink data to another user (RUE). RUE will not be able to cancel the back-propagating interference. A structured precoder is designed at the multi-antenna relay to cancel this interference. With multiple-input multiple-output (MIMO) nodes, the proposed precoder also triangulates the compound MAC and BC phase MIMO channels. The channel triangulation reduces the weighted sum-rate optimization to power allocation problem, which is then cast as a geometric program. Simulation results illustrate the effectiveness of the proposed protocol over conventional solutions.Comment: 30 pages, 7 figures, submitted to IEEE Transactions on Wireless Communication

    Rate-Splitting Robustness in Multi-Pair Massive MIMO Relay Systems

    Get PDF
    Relay systems improve both coverage and system capacity. Toward this direction, a full-duplex (FD) technology, being able to boost the spectral efficiency by transmitting and receiving simultaneously on the same frequency and time resources, is envisaged to play a key role in future networks. However, its benefits come at the expense of self-interference (SI) from their own transmit signal. At the same time, massive multiple-input massive multiple-output systems, bringing unconventionally many antennas, emerge as a promising technology with huge degrees-of-freedom. To this end, this paper considers a multi-pair decode-and-forward FD relay channel, where the relay station is deployed with a large number of antennas. Moreover, the rate-splitting (RS) transmission has recently been shown to provide significant performance benefits in various multi-user scenarios with imperfect channel state information at the transmitter (CSIT). Engaging the RS approach, we employ the deterministic equivalent analysis to derive the corresponding sum-rates in the presence of interferences. Initially, numerical results demonstrate the robustness of RS in half-duplex (HD) systems, since the achievable sum-rate increases without bound, i.e., it does not saturate at high signal-to-noise ratio. Next, we tackle the detrimental effect of SI in FD. In particular, and most importantly, not only FD outperforms HD, but also RS enables increasing the range of SI over which FD outperforms HD. Furthermore, increasing the number of relay station antennas, RS appears to be more efficacious due to imperfect CSIT, since SI decreases. Interestingly, increasing the number of users, the efficiency of RS worsens and its implementation becomes less favorable under these conditions. Finally, we verify that the proposed DEs, being accurate for a large number of relay station antennas, are tight approximations even for realistic system dimensions.Peer reviewedFinal Accepted Versio

    An Overview of Physical Layer Security with Finite-Alphabet Signaling

    Get PDF
    Providing secure communications over the physical layer with the objective of achieving perfect secrecy without requiring a secret key has been receiving growing attention within the past decade. The vast majority of the existing studies in the area of physical layer security focus exclusively on the scenarios where the channel inputs are Gaussian distributed. However, in practice, the signals employed for transmission are drawn from discrete signal constellations such as phase shift keying and quadrature amplitude modulation. Hence, understanding the impact of the finite-alphabet input constraints and designing secure transmission schemes under this assumption is a mandatory step towards a practical implementation of physical layer security. With this motivation, this article reviews recent developments on physical layer security with finite-alphabet inputs. We explore transmit signal design algorithms for single-antenna as well as multi-antenna wiretap channels under different assumptions on the channel state information at the transmitter. Moreover, we present a review of the recent results on secure transmission with discrete signaling for various scenarios including multi-carrier transmission systems, broadcast channels with confidential messages, cognitive multiple access and relay networks. Throughout the article, we stress the important behavioral differences of discrete versus Gaussian inputs in the context of the physical layer security. We also present an overview of practical code construction over Gaussian and fading wiretap channels, and we discuss some open problems and directions for future research.Comment: Submitted to IEEE Communications Surveys & Tutorials (1st Revision
    corecore