929 research outputs found

    Optimal fuzzy iterative learning control based on artificial bee colony for vibration control of piezoelectric smart structures

    Get PDF
    Combining P-type iterative learning (IL) control, fuzzy logic control and artificial bee colony (ABC) algorithm, a new optimal fuzzy IL controller is designed for active vibration control of piezoelectric smart structures. In order to accelerate the learning speed of feedback gain, the fuzzy logic controller is integrated into the ANSYS finite element (FE) models by using APDL (ANSYS Parameter Design Language) approach to adjust adaptively the learning gain of P-type IL control. For improving the performance and robustness of the fuzzy logic controller as well as diminishing human intervention in the operation process, ABC algorithm is used to automatically identify the optimal configurations for values in fuzzy query table, fuzzification parameters and defuzzification parameters, and the main program of ABC algorithm is operated in MATLAB. The active vibration equations are driven from the FE equations for the dynamic response of a linear elastic piezoelectric smart structure. Considering the vibrations generated by various external disturbances, the optimal fuzzy IL controller is numerically investigated for a clamped piezoelectric smart plate. Results demonstrate that the proposed control approach makes the feedback gain has a fast learning speed and performs excellent in vibration suppression. This is demonstrated in the results by comparing the new control approach with the P-type IL control

    Comparison of Metaheuristic Optimization Algorithms for Quadrotor PID Controllers

    Get PDF
    In the present study, different solution methods are discussed in order to control the quadrotor with the most optimal PID parameters for the determined purposes. One of these methods is to make use of meta-heuristic algorithms in control systems. There are some limitations of using a PID controller as a classical construct. However, it is thought that more successful results will be obtained by optimizing its parameters through meta-heuristic algorithms. Initially, the mathematical model of the vehicle was created in MATLAB/Simulink. Then, genetic algorithms (GA), artificial bee colony (ABC), particle swarm optimization (PSO) and firefly algorithms (FA) were determined respectively as optimization methods. And these optimization methods used to determine the PID control parameters are applied to the developed mathematical model in the MATLAB/Simulink environment. In addition, the performances of the optimization methods are evaluated according to the comparison criteria. As a result of the comparison carried out according to ITAE (Integral Time Absolute Error) fitness criteria, ABC (1.2% - 4.4%) in terms of altitude, FA (4% - 13%) in terms of roll angle, GA (13% - %21) in terms of pitch angle, and PSO (4% - %15) in terms of yaw angle has been more successful than other methods

    Dynamic Model Identification for 6-DOF Industrial Robots

    Get PDF
    A complete and systematic procedure for the dynamical parameters identification of industrial robot manipulator is presented. The system model of robot including joint friction model is linear with respect to the dynamical parameters. Identification experiments are carried out for a 6-degree-of-freedom (DOF) ER-16 robot. Relevant data is sampled while the robot is tracking optimal trajectories that excite the system. The artificial bee colony algorithm is introduced to estimate the unknown parameters. And we validate the dynamical model according to torque prediction accuracy. All the results are presented to demonstrate the efficiency of our proposed identification algorithm and the accuracy of the identified robot model

    Mobile Robot Path Finding using Nature Inspired Algorithms - A Review

    Get PDF
     In today’s world, Mobile Robot has been widely used for various purposes across several aspects of life. The environments could be static and dynamic. Path planning for mobile robot is a very important problem in robotics. Path Planning for robot could be referred to the determination of a path; a robot takes in to perform a task given a set of key inputs. To find the best and optimal path from the starting point to the goal point, such that time and distance is reduce, in any given environment avoiding collision with obstacles is an interesting area for research. This research presents a review on the application of nature inspired algorithms in solving the problem of mobile robot path planning such that the robot reaches the target station from source station without collision with obstacles. The future of these nature-inspired algorithms on mobile robot is also discussed

    Beetle Colony Optimization Algorithm and its Application

    Get PDF
    Massive data sets and complex scheduling processes have high-dimensional and non-convex features bringing challenges on various applications. With deep insight into the bio-heuristic opinion, we propose a novel Beetle Colony Optimization (BCO) being able to adapt NP-hard issues to meet growing application demands. Two important mechanisms are introduced into the proposed BCO algorithm. The first one is Beetle Antennae Search (BAS), which is a mechanism of random search along the gradient direction but not use gradient information at all. The second one is swarm intelligence, which is a collective mechanism of decentralized and self-organized agents. Both of them have reached a performance balance to elevate the proposed algorithm to maintain a wide search horizon and high search efficiency. Finally, our algorithm is applied to traveling salesman problem, and quadratic assignment problem and possesses excellent performance, which also shows that the algorithm has good applicability from the side. The effectiveness of the algorithm is also substantiated by comparing the results with the original ant colony optimization (ACO) algorithm in 3D simulation model experimental path planning
    • …
    corecore