13,132 research outputs found

    Contactless 2-dimensional laser sensor for 3-dimensional wire position and tension measurements

    Full text link
    We have developed a contact-free 2-dimensional laser sensor with which the position of wires can be measured in 3 dimensions with an accuracy of better than 10 micrometer and with which the tension of the wires can be determined with an accuracy of 0.04 N. These measurements can be made from a distance of 15 cm. The sensor consists of commercially available laser pointers, lenses, color filters and photodiodes. In our application we have used this laser sensor together with an automated 3 dimensional coordinate table. For a single position measurement, the laser sensor is moved by the 3-dimensional coordinate table in a plane and determines the coordinates at which the wires intersect with this plane. The position of the plane itself (the third coordinate) is given by the third axis of the measurement table which is perpendicular to this plane. The control and readout of the table and the readout of the laser sensor were realized with LabVIEW. The precision of the position measurement in the plane was determined with wires of 0.2 mm and 0.3 mm diameter. We use the sensor for the quality assurance of the wire electrode modules for the KATRIN neutrino mass experiment. We expect that the precision is at least comparable or better if the wires are thinner. Such a device could be well suited for the measurement of wire chamber geometries even with more than one wire layer.Comment: 15 pages, 8 figure

    Application of an On-machine Gage for Diameter Measurements

    Get PDF
    This paper describes the design analysis and application of a laser based gage made specifically for measuring parts on the machine tool to a high accuracy. The tri-beam gage uses three beams of light to measure the local curvature of the part in a manner similar to a V-block gage. The properties of this design include: calibration that is independent of the machine tool scales, non-contact damage free operation, low cost of the gage, and the ability to measure parts in motion

    Study of optical techniques for the Ames unitary wind tunnels. Part 3: Angle of attack

    Get PDF
    A review of optical sensors that are capable of accurate angle of attack measurements in wind tunnels was conducted. These include sensors being used or being developed at NASA Ames and Langley Research Centers, Boeing Airplane Company, McDonald Aircraft Company, Arnold Engineering Development Center, National Aerospace Laboratory of the Netherlands, National Research Council of Canada, and the Royal Aircraft Establishment of England. Some commercial sensors that may be applicable to accurate angle measurements were also reviewed. It was found that the optical sensor systems were based on interferometers, polarized light detector, linear or area photodiode cameras, position sensing photodetectors, and laser scanners. Several of the optical sensors can meet the requirements of the Ames Unitary Plan Wind Tunnel. Two of these, the Boeing interferometer and the Complere lateral effect photodiode sensors are being developed for the Ames Unitary Plan Wind Tunnel

    A novel haptic model and environment for maxillofacial surgical operation planning and manipulation

    Get PDF
    This paper presents a practical method and a new haptic model to support manipulations of bones and their segments during the planning of a surgical operation in a virtual environment using a haptic interface. To perform an effective dental surgery it is important to have all the operation related information of the patient available beforehand in order to plan the operation and avoid any complications. A haptic interface with a virtual and accurate patient model to support the planning of bone cuts is therefore critical, useful and necessary for the surgeons. The system proposed uses DICOM images taken from a digital tomography scanner and creates a mesh model of the filtered skull, from which the jaw bone can be isolated for further use. A novel solution for cutting the bones has been developed and it uses the haptic tool to determine and define the bone-cutting plane in the bone, and this new approach creates three new meshes of the original model. Using this approach the computational power is optimized and a real time feedback can be achieved during all bone manipulations. During the movement of the mesh cutting, a novel friction profile is predefined in the haptical system to simulate the force feedback feel of different densities in the bone

    Experimental comparison of dynamic tracking performanceof iGPS and laser tracker

    Get PDF
    External metrology systems are increasingly being integrated with traditional industrial articulated robots, especially in the aerospace industries, to improve their absolute accuracy for precision operations such as drilling, machining and jigless assembly. While currently most of the metrology assisted robotics control systems are limited in their position update rate, such that the robot has to be stopped in order to receive a metrology coordinate update, some recent efforts are addressed toward controlling robots using real-time metrology data. The indoor GPS is one of the metrology systems that may be used to provide real-time 6DOF data to a robot controller. Even if there is a noteworthy literature dealing with the evaluation of iGPS performance, there is, however, a lack of literature on how well the iGPS performs under dynamic conditions. This paper presents an experimental evaluation of the dynamic measurement performance of the iGPS, tracking the trajectories of an industrial robot. The same experiment is also repeated using a laser tracker. Besides the experiment results presented, this paper also proposes a novel method for dynamic repeatability comparisons of tracking instrument

    Uncertainty budget of a large-range nanopositioning platform based on Monte Carlo simulation

    Get PDF
    The objective of precision systems design is to obtain machines with very high and totally predictable work-zone accuracies. In already functional systems, where the errors can be measured, this is achieved by error correction and compensation. The aim of this work is to propose an uncertainty budget methodology to obtain the final measuring uncertainty of precise measuring systems, after error compensation. The case study is a nanopositioning platform, referred as NanoPla, with a confocal sensor integrated as measuring instrument. The NanoPla performs precise positioning in a large range of 50 mm × 50 mm, and its target is surface topography characterization, at a submicrometre scale. After performing the uncertainty budget of the NanoPla, Monte Carlo method is used to obtain the final measuring uncertainty along the whole NanoPla working range, considering all the casuistry. By studying the results, the authors are able to propose solutions to minimize the final measuring uncertainty

    ILC Beam Energy Measurement by means of Laser Compton Backscattering

    Full text link
    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered γ\gamma-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10410^{-4} or better on a bunch-to-bunch basis while the electron and positron beams are in collision.Comment: 47 pages, 26 figures, version as accepted by Nucl. Instr. Meth. A after improvement

    Calibration and alignment of metrology system for the Nuclear Spectroscopic Telescope Array mission

    Get PDF
    A metrology system to measure the on-orbit movement of a ten meter mast has been built for the Nuclear Spectroscopic Telescope Array (NuSTAR) x-ray observatory. In this paper, the metrology system is described, and the performance is measured. The laser beam stability is discussed in detail. Pre-launch alignment and calibration are also described. The invisible infrared laser beams must be aligned to their corresponding detectors without deploying the telescope in Earth’s gravity. Finally, a possible method for in-flight calibration of the metrology system is described

    Manufacturing Metrology

    Get PDF
    Metrology is the science of measurement, which can be divided into three overlapping activities: (1) the definition of units of measurement, (2) the realization of units of measurement, and (3) the traceability of measurement units. Manufacturing metrology originally implicates the measurement of components and inputs for a manufacturing process to assure they are within specification requirements. It can also be extended to indicate the performance measurement of manufacturing equipment. This Special Issue covers papers revealing novel measurement methodologies and instrumentations for manufacturing metrology from the conventional industry to the frontier of the advanced hi-tech industry. Twenty-five papers are included in this Special Issue. These published papers can be categorized into four main groups, as follows: Length measurement: covering new designs, from micro/nanogap measurement with laser triangulation sensors and laser interferometers to very-long-distance, newly developed mode-locked femtosecond lasers. Surface profile and form measurements: covering technologies with new confocal sensors and imagine sensors: in situ and on-machine measurements. Angle measurements: these include a new 2D precision level design, a review of angle measurement with mode-locked femtosecond lasers, and multi-axis machine tool squareness measurement. Other laboratory systems: these include a water cooling temperature control system and a computer-aided inspection framework for CMM performance evaluation
    corecore