86 research outputs found

    An efficient logic fault diagnosis framework based on effect-cause approach

    Get PDF
    Fault diagnosis plays an important role in improving the circuit design process and the manufacturing yield. With the increasing number of gates in modern circuits, determining the source of failure in a defective circuit is becoming more and more challenging. In this research, we present an efficient effect-cause diagnosis framework for combinational VLSI circuits. The framework consists of three stages to obtain an accurate and reasonably precise diagnosis. First, an improved critical path tracing algorithm is proposed to identify an initial suspect list by backtracing from faulty primary outputs toward primary inputs. Compared to the traditional critical path tracing approach, our algorithm is faster and exact. Second, a novel probabilistic ranking model is applied to rank the suspects so that the most suspicious one will be ranked at or near the top. Several fast filtering methods are used to prune unrelated suspects. Finally, to refine the diagnosis, fault simulation is performed on the top suspect nets using several common fault models. The difference between the observed faulty behavior and the simulated behavior is used to rank each suspect. Experimental results on ISCAS85 benchmark circuits show that this diagnosis approach is efficient both in terms of memory space and CPU time and the diagnosis results are accurate and reasonably precise

    Custom Integrated Circuits

    Get PDF
    Contains reports on ten research projects.Analog Devices, Inc.IBM CorporationNational Science Foundation/Defense Advanced Research Projects Agency Grant MIP 88-14612Analog Devices Career Development Assistant ProfessorshipU.S. Navy - Office of Naval Research Contract N0014-87-K-0825AT&TDigital Equipment CorporationNational Science Foundation Grant MIP 88-5876

    Testability and redundancy techniques for improved yield and reliability of CMOS VLSI circuits

    Get PDF
    The research presented in this thesis is concerned with the design of fault-tolerant integrated circuits as a contribution to the design of fault-tolerant systems. The economical manufacture of very large area ICs will necessitate the incorporation of fault-tolerance features which are routinely employed in current high density dynamic random access memories. Furthermore, the growing use of ICs in safety-critical applications and/or hostile environments in addition to the prospect of single-chip systems will mandate the use of fault-tolerance for improved reliability. A fault-tolerant IC must be able to detect and correct all possible faults that may affect its operation. The ability of a chip to detect its own faults is not only necessary for fault-tolerance, but it is also regarded as the ultimate solution to the problem of testing. Off-line periodic testing is selected for this research because it achieves better coverage of physical faults and it requires less extra hardware than on-line error detection techniques. Tests for CMOS stuck-open faults are shown to detect all other faults. Simple test sequence generation procedures for the detection of all faults are derived. The test sequences generated by these procedures produce a trivial output, thereby, greatly simplifying the task of test response analysis. A further advantage of the proposed test generation procedures is that they do not require the enumeration of faults. The implementation of built-in self-test is considered and it is shown that the hardware overhead is comparable to that associated with pseudo-random and pseudo-exhaustive techniques while achieving a much higher fault coverage through-the use of the proposed test generation procedures. The consideration of the problem of testing the test circuitry led to the conclusion that complete test coverage may be achieved if separate chips cooperate in testing each other's untested parts. An alternative approach towards complete test coverage would be to design the test circuitry so that it is as distributed as possible and so that it is tested as it performs its function. Fault correction relies on the provision of spare units and a means of reconfiguring the circuit so that the faulty units are discarded. This raises the question of what is the optimum size of a unit? A mathematical model, linking yield and reliability is therefore developed to answer such a question and also to study the effects of such parameters as the amount of redundancy, the size of the additional circuitry required for testing and reconfiguration, and the effect of periodic testing on reliability. The stringent requirement on the size of the reconfiguration logic is illustrated by the application of the model to a typical example. Another important result concerns the effect of periodic testing on reliability. It is shown that periodic off-line testing can achieve approximately the same level of reliability as on-line testing, even when the time between tests is many hundreds of hours

    Design-for-delay-testability techniques for high-speed digital circuits

    Get PDF
    The importance of delay faults is enhanced by the ever increasing clock rates and decreasing geometry sizes of nowadays' circuits. This thesis focuses on the development of Design-for-Delay-Testability (DfDT) techniques for high-speed circuits and embedded cores. The rising costs of IC testing and in particular the costs of Automatic Test Equipment are major concerns for the semiconductor industry. To reverse the trend of rising testing costs, DfDT is\ud getting more and more important

    Investigation into voltage and process variation-aware manufacturing test

    No full text
    Increasing integration and complexity in IC design provides challenges for manufacturing testing. This thesis studies how process and supply voltage variation influence defect behaviour to determine the impact on manufacturing test cost and quality. The focus is on logic testing of static CMOS designs with respect to two important defect types in deep submicron CMOS: resistive bridges and full opens. The first part of the thesis addresses testing for resistive bridge defects in designs with multiple supply voltage settings. To enable analysis, a fault simulator is developed using a supply voltage-aware model for bridge defect behaviour. The analysis shows that for high defect coverage it is necessary to perform test for more than one supply voltage setting, due to supply voltage-dependent behaviour. A low-cost and effective test method is presented consisting of multi-voltage test generation that achieves high defect coverage and test set size reduction without compromise to defect coverage. Experiments on synthesised benchmarks with realistic bridge locations validate the proposed method.The second part focuses on the behaviour of full open defects under supply voltage variation. The aim is to determine the appropriate value of supply voltage to use when testing. Two models are considered for the behaviour of full open defects with and without gate tunnelling leakage influence. Analysis of the supply voltage-dependent behaviour of full open defects is performed to determine if it is required to test using more than one supply voltage to detect all full open defects. Experiments on synthesised benchmarks using an extended version of the fault simulator tool mentioned above, measure the quantitative impact of supply voltage variation on defect coverage.The final part studies the impact of process variation on the behaviour of bridge defects. Detailed analysis using synthesised ISCAS benchmarks and realistic bridge model shows that process variation leads to additional faults. If process variation is not considered in test generation, the test will fail to detect some of these faults, which leads to test escapes. A novel metric to quantify the impact of process variation on test quality is employed in the development of a new test generation tool, which achieves high bridge defect coverage. The method achieves a user-specified test quality with test sets which are smaller than test sets generated without consideration of process variation

    A Comprehensive Fault Model for Concurrent Error Detection in MOS Circuits

    Get PDF
    Naval Electronics Sys. Comm. and Office of Naval Research / N00039-80-C-0556Ope

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    NASA Space Engineering Research Center for VLSI systems design

    Get PDF
    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design

    DESIGN AND TEST OF DIGITAL CIRCUITS AND SYSTEMS USING CMOS AND EMERGING RESISTIVE DEVICES

    Get PDF
    The memristor is an emerging nano-device. Low power operation, high density, scalability, non-volatility, and compatibility with CMOS Technology have made it a promising technology for memory, Boolean implementation, computing, and logic systems. This dissertation focuses on testing and design of such applications. In particular, we investigate on testing of memristor-based memories, design of memristive implementation of Boolean functions, and reliability and design of neuromorphic computing such as neural network. In addition, we show how to modify threshold logic gates to implement more functions. Although memristor is a promising emerging technology but is prone to defects due to uncertainties in nanoscale fabrication. Fast March tests are proposed in Chapter 2 that benefit from fast write operations. The test application time is reduced significantly while simultaneously reducing the average test energy per cell. Experimental evaluation in 45 nm technology show a speed-up of approximately 70% with a decrease in energy by approximately 40%. DfT schemes are proposed to implement the new test methods. In Chapter 3, an Integer Linear Programming based framework to identify current-mode threshold logic functions is presented. It is shown that threshold logic functions can be implemented in CMOS-based current mode logic with reduced transistor count when the input weights are not restricted to be integers. Experimental results show that many more functions can be implemented with predetermined hardware overhead, and the hardware requirement of a large percentage of existing threshold functions is reduced when comparing to the traditional CMOS-based threshold logic implementation. In Chapter 4, a new method to implement threshold logic functions using memristors is presented. This method benefits from the high range of memristor’s resistivity which is used to define different weight values, and reduces significantly the transistor count. The proposed approach implements many more functions as threshold logic gates when comparing to existing implementations. Experimental results in 45 nm technology show that the proposed memristive approach implements threshold logic gates with less area and power consumption. Finally, Chapter 5 focuses on current-based designs for neural networks. CMOS aging impacts the total synaptic current and this impacts the accuracy. Chapter 5 introduces an enhanced memristive crossbar array (MCA) based analog neural network architecture to improve reliability due to the aging effect. A built-in current-based calibration circuit is introduced to restore the total synaptic current. The calibration circuit is a current sensor that receives the ideal reference current for non-aged column and restores the reduced sensed current at each column to the ideal value. Experimental results show that the proposed approach restores the currents with less than 1% precision, and the area overhead is negligible
    corecore