52 research outputs found

    An Overview of Suomi NPP VIIRS Calibration Maneuvers

    Get PDF
    The first Visible Infrared Imager Radiometer Suite (VIIRS) instrument was successfully launched on-board the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on October 28, 2011. Suomi NPP VIIRS observations are made in 22 spectral bands, from the visible (VIS) to the long-wave infrared (LWIR), and are used to produce 22 Environmental Data Records (EDRs) with a broad range of scientific applications. The quality of these VIIRS EDRs strongly depends on the quality of its calibrated and geo-located Sensor Date Records (SDRs). Built with a strong heritage to the NASA's EOS MODerate resolution Imaging Spectroradiometer (MODIS) instrument, the VIIRS is calibrated on-orbit using a similar set of on-board calibrators (OBC), including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the reflective solar bands (RSB) and a blackbody (BB) for the thermal emissive bands (TEB). On-orbit maneuvers of the SNPP spacecraft provide additional calibration and characterization data from the VIIRS instrument which cannot be obtained pre-launch and are required to produce the highest quality SDRs. These include multi-orbit yaw maneuvers for the characterization of SD and SDSM screen transmission, quasi-monthly roll maneuvers to acquire lunar observations to track sensor degradation in the visible through shortwave infrared, and a driven pitch-over maneuver to acquire multiple scans of deep space to determine TEB response versus scan angle (RVS). This paper pro-vides an overview of these three SNPP calibration maneuvers. Discussions are focused on their potential calibration and science benefits, pre-launch planning activities, and on-orbit scheduling and implementation strategies. Results from calibration maneuvers performed during the Intensive Calibration and Validation (ICV) period for the VIIRS sensor are illustrated. Also presented in this paper are lessons learned regarding the implementation of calibration spacecraft maneuvers on follow-on missions

    Characterization of NPP Visible/Infrared Imager Radiometer Suite (VIIRS) Reflective Solar Bands Dual Gain Anomaly

    Get PDF
    The Visible/Infrared Imager Radiometer Suite (VIIRS) contains six dual gain bands in the reflective solar spectrum. The dual gain bands are designed to switch gain mode at pre-defined thresholds to achieve high resolution at low radiances while maintaining the required dynamic range for science. During pre-launch testing, an anomaly in the electronic response before transitioning from high to low gain was discovered and characterized. On-orbit, the anomaly was confirmed using MODIS data collected during Simultaneous Nadir Overpasses (SNOs). The analysis of the Earth scene data shows that dual gain anomaly can be determined at the orbital basis. To characterize the dual gain anomaly, the anomaly region and electronic offsets were tracked per week during the first 8 month of VIIRS operation. The temporal analysis shows the anomaly region can drift ~20 DN and is impacted by detectors DC Restore. The estimated anomaly flagging regions cover ~2.5 % of the high gain dynamic range and are consistent with prelaunch and on-orbit LUT. The prelaunch results had a smaller anomaly range (30-50 DN) and are likely the results of more stable electronics from the shorter data collection time. Finally, this study suggests future calibration efforts to focus on the anomaly's impact on science products and possible correction method to reduce uncertainties

    Suomi NPP VIIRS Prelaunch and On-orbit Geometric Calibration and Characterization

    Get PDF
    The Visible Infrared Imager Radiometer Suite (VIIRS) sensor was launched 28 October 2011 on the Suomi National Polarorbiting Partnership (SNPP) satellite. VIIRS has 22 spectral bands covering the spectrum between 0.412 m and 12.01 m, including 16 moderate resolution bands (M-bands) with a spatial resolution of 750 m at nadir, 5 imaging resolution bands (I-bands) with a spatial resolution of 375 m at nadir, and 1 day-night band (DNB) with a near-constant 750 m spatial resolution throughout the scan. These bands are located in a visible and near infrared (VisNIR) focal plane assembly (FPA), a short- and mid-wave infrared (SWMWIR) FPA and a long-wave infrared (LWIR) FPA. All bands, except the DNB, are co-registered for proper environmental data records (EDRs) retrievals. Observations from VIIRS instrument provide long-term measurements of biogeophysical variables for climate research and polar satellite data stream for the operational communitys use in weather forecasting and disaster relief and other applications. Well Earth-located (geolocated) instrument data is important to retrieving accurate biogeophysical variables. This paper describes prelaunch pointing and alignment measurements, and the two sets of on-orbit correction of geolocation errors, the first of which corrected error from 1,300 m to within 75 m (20 I-band pixel size), and the second of which fine tuned scan angle dependent errors, bringing VIIRS geolocation products to high maturity in one and a half years of the SNPP VIIRS on-orbit operations. Prelaunch calibration and the on-orbit characterization of sensor spatial impulse responses and band-to-band co-registration (BBR) are also described

    Cross Calibration of SeaWiFS and MODIS Using On-Orbit Observations of the Moon

    Get PDF
    Observations of the Moon provide a primary technique for the on-orbit cross calibration of Earth remote sensing instruments. Monthly lunar observations are major components of the on-orbit calibration strategies of SeaWiFS and MODIS. SeaWiFS has collected more than 132 low phase angle and 59 high phase angle lunar observations over 12 years, Terra MODIS has collected more than 82 scheduled and 297 unscheduled lunar observations over 9 years, and Aqua MODIS has collected more than 61 scheduled and 171 unscheduled lunar observations over 7 years. The NASA Ocean Biology Processing Group s Calibration and Validation Team and the NASA MODIS Characterization Support Team use the USGS RObotic Lunar Observatory (ROLO) photometric model of the Moon to compare these time series of lunar observations over time and varying observing geometries. The cross calibration results show that Terra MODIS and Aqua MODIS agree, band-to-band, at the 1-3% level, while SeaWiFS and either MODIS instrument agree at the 3-8% level. The combined uncertainties of these comparisons are 1.3% for Terra and Aqua MODIS, 1.4% for SeaWiFS and Terra MODIS, and 1.3% for SeaWiFS and Aqua MODIS. Any residual phase dependence in the ROLO model, based on these observations, is less than 1.7% over the phase angle range of -80deg to -6deg and +5deg to +82deg . The lunar cross calibration of SeaWiFS, Terra MODIS, and Aqua MODIS is consistent with the vicarious calibration of ocean color products for these instruments, with the vicarious gains mitigating the calibration biases for the ocean color bands

    Satellite Ocean Color Sensor Design Concepts and Performance Requirements

    Get PDF
    In late 1978, the National Aeronautics and Space Administration (NASA) launched the Nimbus-7 satellite with the Coastal Zone Color Scanner (CZCS) and several other sensors, all of which provided major advances in Earth remote sensing. The inspiration for the CZCS is usually attributed to an article in Science by Clarke et al. who demonstrated that large changes in open ocean spectral reflectance are correlated to chlorophyll-a concentrations. Chlorophyll-a is the primary photosynthetic pigment in green plants (marine and terrestrial) and is used in estimating primary production, i.e., the amount of carbon fixed into organic matter during photosynthesis. Thus, accurate estimates of global and regional primary production are key to studies of the earth's carbon cycle. Because the investigators used an airborne radiometer, they were able to demonstrate the increased radiance contribution of the atmosphere with altitude that would be a major issue for spaceborne measurements. Since 1978, there has been much progress in satellite ocean color remote sensing such that the technique is well established and is used for climate change science and routine operational environmental monitoring. Also, the science objectives and accompanying methodologies have expanded and evolved through a succession of global missions, e.g., the Ocean Color and Temperature Sensor (OCTS), the Seaviewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Medium Resolution Imaging Spectrometer (MERIS), and the Global Imager (GLI). With each advance in science objectives, new and more stringent requirements for sensor capabilities (e.g., spectral coverage) and performance (e.g., signal-to-noise ratio, SNR) are established. The CZCS had four bands for chlorophyll and aerosol corrections. The Ocean Color Imager (OCI) recommended for the NASA Pre-Aerosol, Cloud, and Ocean Ecosystems (PACE) mission includes 5 nanometers hyperspectral coverage from 350 to 800 nanometers with three additional discrete near infrared (NIR) and shortwave infrared (SWIR) ocean aerosol correction bands. Also, to avoid drift in sensor sensitivity from being interpreted as environmental change, climate change research requires rigorous monitoring of sensor stability. For SeaWiFS, monthly lunar imaging accurately tracked stability at an accuracy of approximately 0.1% that allowed the data to be used for climate studies [2]. It is now acknowledged by the international community that future missions and sensor designs need to accommodate lunar calibrations. An overview of ocean color remote sensing and a review of the progress made in ocean color remote sensing and the variety of research applications derived from global satellite ocean color data are provided. The purpose of this chapter is to discuss the design options for ocean color satellite radiometers, performance and testing criteria, and sensor components (optics, detectors, electronics, etc.) that must be integrated into an instrument concept. These ultimately dictate the quality and quantity of data that can be delivered as a trade against mission cost. Historically, science and sensor technology have advanced in a "leap-frog" manner in that sensor design requirements for a mission are defined many years before a sensor is launched and by the end of the mission, perhaps 15-20 years later, science applications and requirements are well beyond the capabilities of the sensor. Section 3 provides a summary of historical mission science objectives and sensor requirements. This progression is expected to continue in the future as long as sensor costs can be constrained to affordable levels and still allow the incorporation of new technologies without incurring unacceptable risk to mission success. The IOCCG Report Number 13 discusses future ocean biology mission Level-1 requirements in depth

    JPSS-1 VIIRS Solar Diffuser Witness Sample BRF Calibration Using a Table-Top Goniometer at NASA GSFC

    Get PDF
    In support of the prelaunch calibration of the Joint Polar Satellite System-1 (JPSS-1) Visible Infrared Imaging Radiometer Suite (VIIRS), the Bidirectional Reflectance Factor (BRF) and Bidirectional Reflectance Distribution Function (BRDF) of a VIIRS solar diffuser (SD) witness sample were determined using the table-top goniometer (TTG) located in the NASA GSFC Diffuser Calibration Laboratory (DCL). The BRF of the sample was measured for VIIRS bands in the reflected solar wavelength region from 410 nm to 2250 nm. The new TTG was developed to extend the laboratorys BRF and BRDF measurement capability to wavelengths from 1600 to 2250 nm and specifically for the VIIRS M11 band centered at 2250 nm. We show the new features and capabilities of the new scatterometer and present the BRF and BRDF results for the incident/scatter test configuration of 0/45 and for a set of angles representing of the VIIRS on-orbit solar diffuser calibration. The BRF and BRDF results of the SD witness were used to assist in finalizing the set of BRF values of J1 VIIRS SD to be used on-orbit. Comparison of the BRF results between the JPSS-1 VIIRS SD witness sample and the flight SD panel was made by varying different sample clocking orientations and by analyzing the ratio of BRF to total hemispherical reflectance in effort to minimize the uncertainty of the extrapolated flight BRF value at 2250 nm. Furthermore, differences between the prelaunch BRF results and those used in the VIIRS on-orbit BRF lookup table were examined to improve the VIIRS BRF calibration for future missions

    Land Surface Temperature Product Validation Best Practice Protocol Version 1.0 - October, 2017

    Get PDF
    The Global Climate Observing System (GCOS) has specified the need to systematically generate andvalidate Land Surface Temperature (LST) products. This document provides recommendations on goodpractices for the validation of LST products. Internationally accepted definitions of LST, emissivity andassociated quantities are provided to ensure the compatibility across products and reference data sets. Asurvey of current validation capabilities indicates that progress is being made in terms of up-scaling and insitu measurement methods, but there is insufficient standardization with respect to performing andreporting statistically robust comparisons.Four LST validation approaches are identified: (1) Ground-based validation, which involvescomparisons with LST obtained from ground-based radiance measurements; (2) Scene-based intercomparisonof current satellite LST products with a heritage LST products; (3) Radiance-based validation,which is based on radiative transfer calculations for known atmospheric profiles and land surface emissivity;(4) Time series comparisons, which are particularly useful for detecting problems that can occur during aninstrument's life, e.g. calibration drift or unrealistic outliers due to undetected clouds. Finally, the need foran open access facility for performing LST product validation as well as accessing reference LST datasets isidentified

    An Introduction to the Geostationary-NASA Earth Exchange (GeoNEX) Products: 1. Top-of-Atmosphere Reflectance and Brightness Temperature

    Get PDF
    GeoNEX is a collaborative project led by scientists from NASA, NOAA, and many other institutes around the world to generate Earth monitoring products using data streams from the latest Geostationary (GEO) sensors including the GOES-16/17 Advanced Baseline Imager (ABI), the Himawari-8/9 Advanced Himawari Imager (AHI), and more. An accurate and consistent product of the Top-Of-Atmosphere (TOA) reflectance and brightness temperature is the starting point in the scientific processing pipeline and has significant influences on the downstream products. This paper describes the main steps and the algorithms in generating the GeoNEX TOA products, starting from the conversion of digital numbers to physical quantities with the latest radiometric calibration information. We implement algorithms to detect and remove residual georegistration uncertainties automatically in both GOES and Himawari L1bdata, adjust the data for topographic relief, estimate the pixelwise data-acquisition time, and accurately calculate the solar illumination angles for each pixel in the domain at every time step. Finally, we reproject the TOA products to a globally tiled common grid in geographic coordinates in order to facilitate intercomparisons and/or synergies between the GeoNEX products and existing Earth observation datasets from polar-orbiting satellites
    corecore