149 research outputs found

    Coding on countably infinite alphabets

    Get PDF
    33 pagesInternational audienceThis paper describes universal lossless coding strategies for compressing sources on countably infinite alphabets. Classes of memoryless sources defined by an envelope condition on the marginal distribution provide benchmarks for coding techniques originating from the theory of universal coding over finite alphabets. We prove general upper-bounds on minimax regret and lower-bounds on minimax redundancy for such source classes. The general upper bounds emphasize the role of the Normalized Maximum Likelihood codes with respect to minimax regret in the infinite alphabet context. Lower bounds are derived by tailoring sharp bounds on the redundancy of Krichevsky-Trofimov coders for sources over finite alphabets. Up to logarithmic (resp. constant) factors the bounds are matching for source classes defined by algebraically declining (resp. exponentially vanishing) envelopes. Effective and (almost) adaptive coding techniques are described for the collection of source classes defined by algebraically vanishing envelopes. Those results extend ourknowledge concerning universal coding to contexts where the key tools from parametric inferenc

    Learning Non-Parametric and High-Dimensional Distributions via Information-Theoretic Methods

    Get PDF
    Learning distributions that govern generation of data and estimation of related functionals are the foundations of many classical statistical problems. In the following dissertation we intend to investigate such topics when either the hypothesized model is non-parametric or the number of free parameters in the model grows along with the sample size. Especially, we study the above scenarios for the following class of problems with the goal of obtaining minimax rate-optimal methods for learning the target distributions when the sample size is finite. Our techniques are based on information-theoretic divergences and related mutual-information based methods. (i) Estimation in compound decision and empirical Bayes settings: To estimate the data-generating distribution, one often takes the following two-step approach. In the first step the statistician estimates the distribution of the parameters, either the empirical distribution or the postulated prior, and then in the second step plugs in the estimate to approximate the target of interest. In the literature, the estimation of empirical distribution is known as the compound decision problem and the estimation of prior is known as the problem of empirical Bayes. In our work we use the method of minimum-distance estimation for approximating these distributions. Considering certain discrete data setups, we show that the minimum-distance based method provides theoretically and practically sound choices for estimation. The computational and algorithmic aspects of the estimators are also analyzed. (ii) Prediction with Markov chains: Given observations from an unknown Markov chain, we study the problem of predicting the next entry in the trajectory. Existing analysis for such a dependent setup usually centers around concentration inequalities that uses various extraneous conditions on the mixing properties. This makes it difficult to achieve results independent of such restrictions. We introduce information-theoretic techniques to bypass such issues and obtain fundamental limits for the related minimax problems. We also analyze conditions on the mixing properties that produce a parametric rate of prediction errors
    • …
    corecore