516 research outputs found

    High-Accuracy Gaze Estimation for Interpolation-Based Eye-Tracking Methods

    Get PDF
    This study investigates the influence of the eye-camera location associated with the accuracy and precision of interpolation-based eye-tracking methods. Several factors can negatively influence gaze estimation methods when building a commercial or off-the-shelf eye tracker device, including the eye-camera location in uncalibrated setups. Our experiments show that the eye-camera location combined with the non-coplanarity of the eye plane deforms the eye feature distribution when the eye-camera is far from the eye’s optical axis. This paper proposes geometric transformation methods to reshape the eye feature distribution based on the virtual alignment of the eye-camera in the center of the eye’s optical axis. The data analysis uses eye-tracking data from a simulated environment and an experiment with 83 volunteer participants (55 males and 28 females). We evaluate the improvements achieved with the proposed methods using Gaussian analysis, which defines a range for high-accuracy gaze estimation between −0.5∘ and 0.5∘. Compared to traditional polynomial-based and homography-based gaze estimation methods, the proposed methods increase the number of gaze estimations in the high-accuracy range

    Low cost gaze estimation: knowledge-based solutions

    Get PDF
    Eye tracking technology in low resolution scenarios is not a completely solved issue to date. The possibility of using eye tracking in a mobile gadget is a challenging objective that would permit to spread this technology to non-explored fields. In this paper, a knowledge based approach is presented to solve gaze estimation in low resolution settings. The understanding of the high resolution paradigm permits to propose alternative models to solve gaze estimation. In this manner, three models are presented: a geometrical model, an interpolation model and a compound model, as solutions for gaze estimation for remote low resolution systems. Since this work considers head position essential to improve gaze accuracy, a method for head pose estimation is also proposed. The methods are validated in an optimal framework, I2Head database, which combines head and gaze data. The experimental validation of the models demonstrates their sensitivity to image processing inaccuracies, critical in the case of the geometrical model. Static and extreme movement scenarios are analyzed showing the higher robustness of compound and geometrical models in the presence of user's displacement. Accuracy values of about 3° have been obtained, increasing to values close to 5° in extreme displacement settings, results fully comparable with the state-of-the-art

    Optical Gaze Tracking with Spatially-Sparse Single-Pixel Detectors

    Get PDF
    Gaze tracking is an essential component of next generation displays for virtual reality and augmented reality applications. Traditional camera-based gaze trackers used in next generation displays are known to be lacking in one or multiple of the following metrics: power consumption, cost, computational complexity, estimation accuracy, latency, and form-factor. We propose the use of discrete photodiodes and light-emitting diodes (LEDs) as an alternative to traditional camera-based gaze tracking approaches while taking all of these metrics into consideration. We begin by developing a rendering-based simulation framework for understanding the relationship between light sources and a virtual model eyeball. Findings from this framework are used for the placement of LEDs and photodiodes. Our first prototype uses a neural network to obtain an average error rate of 2.67{\deg} at 400Hz while demanding only 16mW. By simplifying the implementation to using only LEDs, duplexed as light transceivers, and more minimal machine learning model, namely a light-weight supervised Gaussian process regression algorithm, we show that our second prototype is capable of an average error rate of 1.57{\deg} at 250 Hz using 800 mW.Comment: 10 pages, 8 figures, published in IEEE International Symposium on Mixed and Augmented Reality (ISMAR) 202

    Distributed Real-Time Computation of the Point of Gaze

    Get PDF
    This paper presents a minimally intrusive real-time gaze-tracking prototype to be used in several scenarios, including a laboratory stall and an in-vehicle system. The system requires specific infrared illumination to allow it to work with variable light conditions. However, it is minimally intrusive due to the use of a carefully configured switched infrared LED array. Although the perceived level of illumination generated by this array is high, it is achieved using low-emission infrared light beams. Accuracy is achieved through a precise estimate of the center of the user's pupil. To overcome inherent time restrictions while using low-cost processors, its main image-processing algorithm has been distributed over four main computing tasks. This structure not only enables good performance, but also simplifies the task of experimenting with alternative computationally-complex algorithms and with alternative tracking models based on locating both user eyes and several cameras to improve user mobility

    Eye center localization and gaze gesture recognition for human-computer interaction

    Get PDF
    © 2016 Optical Society of America. This paper introduces an unsupervised modular approach for accurate and real-time eye center localization in images and videos, thus allowing a coarse-to-fine, global-to-regional scheme. The trajectories of eye centers in consecutive frames, i.e., gaze gestures, are further analyzed, recognized, and employed to boost the human-computer interaction (HCI) experience. This modular approach makes use of isophote and gradient features to estimate the eye center locations. A selective oriented gradient filter has been specifically designed to remove strong gradients from eyebrows, eye corners, and shadows, which sabotage most eye center localization methods. A real-world implementation utilizing these algorithms has been designed in the form of an interactive advertising billboard to demonstrate the effectiveness of our method for HCI. The eye center localization algorithm has been compared with 10 other algorithms on the BioID database and six other algorithms on the GI4E database. It outperforms all the other algorithms in comparison in terms of localization accuracy. Further tests on the extended Yale Face Database b and self-collected data have proved this algorithm to be robust against moderate head poses and poor illumination conditions. The interactive advertising billboard has manifested outstanding usability and effectiveness in our tests and shows great potential for benefiting a wide range of real-world HCI applications

    An end-to-end review of gaze estimation and its interactive applications on handheld mobile devices

    Get PDF
    In recent years we have witnessed an increasing number of interactive systems on handheld mobile devices which utilise gaze as a single or complementary interaction modality. This trend is driven by the enhanced computational power of these devices, higher resolution and capacity of their cameras, and improved gaze estimation accuracy obtained from advanced machine learning techniques, especially in deep learning. As the literature is fast progressing, there is a pressing need to review the state of the art, delineate the boundary, and identify the key research challenges and opportunities in gaze estimation and interaction. This paper aims to serve this purpose by presenting an end-to-end holistic view in this area, from gaze capturing sensors, to gaze estimation workflows, to deep learning techniques, and to gaze interactive applications.PostprintPeer reviewe

    Deep into the Eyes: Applying Machine Learning to improve Eye-Tracking

    Get PDF
    Eye-tracking has been an active research area with applications in personal and behav- ioral studies, medical diagnosis, virtual reality, and mixed reality applications. Improving the robustness, generalizability, accuracy, and precision of eye-trackers while maintaining privacy is crucial. Unfortunately, many existing low-cost portable commercial eye trackers suffer from signal artifacts and a low signal-to-noise ratio. These trackers are highly depen- dent on low-level features such as pupil edges or diffused bright spots in order to precisely localize the pupil and corneal reflection. As a result, they are not reliable for studying eye movements that require high precision, such as microsaccades, smooth pursuit, and ver- gence. Additionally, these methods suffer from reflective artifacts, occlusion of the pupil boundary by the eyelid and often require a manual update of person-dependent parame- ters to identify the pupil region. In this dissertation, I demonstrate (I) a new method to improve precision while maintaining the accuracy of head-fixed eye trackers by combin- ing velocity information from iris textures across frames with position information, (II) a generalized semantic segmentation framework for identifying eye regions with a further extension to identify ellipse fits on the pupil and iris, (III) a data-driven rendering pipeline to generate a temporally contiguous synthetic dataset for use in many eye-tracking ap- plications, and (IV) a novel strategy to preserve privacy in eye videos captured as part of the eye-tracking process. My work also provides the foundation for future research by addressing critical questions like the suitability of using synthetic datasets to improve eye-tracking performance in real-world applications, and ways to improve the precision of future commercial eye trackers with improved camera specifications

    A Novel approach to a wearable eye tracker using region-based gaze estimation

    Get PDF
    Eye tracking studies are useful to understand human behavior and reactions to visual stimuli. To conduct experiments in natural environments it is common to use mobile or wearable eye trackers. To ensure these systems do not interfere with the natural behavior of the subject during the experiment, they should be comfortable and be able to collect information about the subject\u27s point of gaze for long periods of time. Most existing mobile eye trackers are costly and complex. Furthermore they partially obstruct the visual field of the subject by placing the eye camera directly in front of the eye. These systems are not suitable for natural outdoor environments due to external ambient light interfering with the infrared illumination used to facilitate gaze estimation. To address these limitations a new eye tracking system was developed and analyzed. The new system was designed to be light and unobtrusive. It has two high definition cameras mounted onto headgear worn by the subject and two mirrors placed outside the visual field of the subject to capture eye images. Based on the angular perspective of the eye, a novel gaze estimation algorithm was designed and optimized to estimate the gaze of the subject in one of nine possible directions. Several methods were developed to compromise between shape-based models and appearance-based models. The eye model and features were chosen based on the correlation with the different gaze directions. The performance of this eye tracking system was then experimentally evaluated based on the accuracy of gaze estimation and the weight of the system
    • …
    corecore