205 research outputs found

    Design Techniques for High-Speed ADCs in Nanoscale CMOS Technologies

    Get PDF

    Design of a wideband low-power continuous-time sigma-delta (ΣΔ) analog-to-digital converter (ADC) in 90nm CMOS technology

    Get PDF
    The growing trend in VLSI systems is to shift more signal processing functionality from analog to digital domain to reduce manufacturing cost and improve reliability. It has resulted in the demand for wideband high-resolution analog-to-digital converters (ADCs). There are many different techniques for doing analog-to-digital conversions. Oversampling ADC based on sigma-delta (ΣΔ) modulation is receiving a lot of attention due to its significantly relaxed matching requirements on analog components. Moreover, it does not need a steep roll-off anti-aliasing filter. A ΣΔ ADC can be implemented either as a discrete time system or a continuous time one. Nowadays growing interest is focused on the continuous-time ΣΔ ADC for its use in the wideband and low-power applications, such as medical imaging, portable ultrasound systems, wireless receivers, and test equipments. A continuous-time ΣΔ ADC offers some important advantages over its discrete-time counterpart, including higher sampling frequency, intrinsic anti-alias filtering, much relaxed sampling network requirements, and low-voltage implementation. Especially it has the potential in achieving low power consumption. This dissertation presents a novel fifth-order continuous-time ΣΔ ADC which is implemented in a 90nm CMOS technology with single 1.0-V power supply. To speed up design process, an improved direct design method is proposed and used to design the loop filter transfer function. To maximize the in-band gain provided by the loop filter, thus maximizing in-band noise suppression, the excess loop delay must be kept minimum. In this design, a very low latency 4-bit flash quantizer with digital-to-analog (DAC) trimming is utilized. DAC trimming technique is used to correct the quantizer offset error, which allows minimum-sized transistors to be used for fast and low-power operation. The modulator has sampling clock of 800MHz. It achieves a dynamic range (DR) of 75dB and a signal-to-noise-and-distortion ratio (SNDR) of 70dB over 25MHz input signal bandwidth with 16.4mW power dissipation. Our work is among the most improved published to date. It uses the lowest supply voltage and has the highest input signal bandwidth while dissipating the lowest power among the bandwidths exceeding 15MHz

    Design and Optimization of Low-power Level-crossing ADCs

    Get PDF
    This thesis investigates some of the practical issues related to the implementation of level-crossing ADCs in nanometer CMOS. A level-crossing ADC targeting minimum power is designed and measured. Three techniques to circumvent performance limitations due to the zero-crossing detector at the heart of the ADC are proposed and demonstrated: an adaptive resolution algorithm, an adaptive bias current algorithm, and automatic offset cancelation. The ADC, fabricated in 130 nm CMOS, is designed to operate over a 20 kHz bandwidth while consuming a maximum of 8.5 uW. A peak SNDR of 54 dB for this 8-bit ADC demonstrates a key advantage of level-crossing sampling, namely SNDR higher than the classic Nyquist limit

    Low Power CMOS Interface Circuitry for Sensors and Actuators

    Get PDF

    Design Considerations for Wide Bandwidth Continuous-Time Low-Pass Delta-Sigma Analog-to-Digital Converters

    Get PDF
    Continuous-time (CT) delta-sigma (ΔΣ) analog-to-digital converters (ADC) have emerged as the popular choice to achieve high resolution and large bandwidth due to their low cost, power efficiency, inherent anti-alias filtering and digital post processing capabilities. This work presents a detailed system-level design methodology for a low-power CT ΔΣ ADC. Design considerations and trade-offs at the system-level are presented. A novel technique to reduce the sensitivity of the proposed ADC to clock jitter-induced feedback charge variations by employing a hybrid digital-to-analog converter (DAC) based on switched-capacitor circuits is also presented. The proposed technique provides a clock jitter tolerance of up to 5ps (rms). The system is implemented using a 5th order active-RC loop filter, 9-level quantizer and DAC, achieving 74dB SNDR over 20MHz signal bandwidth, at 400MHz sampling frequency in a 1.2V, 90 nm CMOS technology. A novel technique to improve the linearity of the feedback digital-to-analog converters (DAC) in a target 11-bits resolution, 100MHz bandwidth, 2GHz sampling frequency CT ΔΣ ADC is also presented in this work. DAC linearity is improved by combining dynamic element matching and automatic background calibration to achieve up to 18dB improvement in the SNR. Transistor-level circuit implementation of the proposed technique was done in a 1.8V, 0.18μm BiCMOS process

    High-Speed Delta-Sigma Data Converters for Next-Generation Wireless Communication

    Get PDF
    In recent years, Continuous-time Delta-Sigma(CT-ΔΣ) analog-to-digital converters (ADCs) have been extensively investigated for their use in wireless receivers to achieve conversion bandwidths greater than 15 MHz and higher resolution of 10 to 14 bits. This dissertation investigates the current state-of-the-art high-speed single-bit and multi-bit Continuous-time Delta-Sigma modulator (CT-ΔΣM) designs and their limitations due to circuit non-idealities in achieving the performance required for next-generation wireless standards. Also, we presented complete architectural and circuit details of a high-speed single-bit and multi-bit CT-ΔΣM operating at a sampling rate of 1.25 GSps and 640 MSps respectively (the highest reported sampling rate in a 0.13 μm CMOS technology node) with measurement results. Further, we propose novel hybrid ΔΣ architecture with two-step quantizer to alleviate the bandwidth and resolution bottlenecks associated with the contemporary CT-ΔΣM topologies. To facilitate the design with the proposed architecture, a robust systematic design method is introduced to determine the loop-filter coefficients by taking into account the non-ideal integrator response, such as the finite opamp gain and the presence of multiple parasitic poles and zeros. Further, comprehensive system-level simulation is presented to analyze the effect of two-step quantizer non-idealities such as the offset and gain error in the sub-ADCs, and the current mismatch between the MSB and LSB elements in the feedback DAC. The proposed novel architecture is demonstrated by designing a high-speed wideband 4th order CT-ΔΣ modulator prototype, employing a two-step quantizer with 5-bits resolution. The proposed modulator takes advantage of the combination of a high-resolution two-step quantization technique and an excess-loop delay (ELD) compensation of more than one clock cycle to achieve lower-power consumption (28 mW), higher dynamic range (\u3e69 dB) with a wide conversion bandwidth (20 MHz), even at a lower sampling rate of 400 MHz. The proposed modulator achieves a Figure of Merit (FoM) of 340 fJ/level
    • …
    corecore