127 research outputs found

    Measuring aberrations in lithographic projection systems with phase wheel targets

    Get PDF
    A significant factor in the degradation of nanolithographic image fidelity is optical wavefront aberration. Aerial image sensitivity to aberrations is currently much greater than in earlier lithographic technologies, a consequence of increased resolution requirements. Optical wavefront tolerances are dictated by the dimensional tolerances of features printed, which require lens designs with a high degree of aberration correction. In order to increase lithographic resolution, lens numerical aperture (NA) must continue to increase and imaging wavelength must decrease. Not only do aberration magnitudes scale inversely with wavelength, but high-order aberrations increase at a rate proportional to NA2 or greater, as do aberrations across the image field. Achieving lithographic-quality diffraction limited performance from an optical system, where the relatively low image contrast is further reduced by aberrations, requires the development of highly accurate in situ aberration measurement. In this work, phase wheel targets are used to generate an optical image, which can then be used to both describe and monitor aberrations in lithographic projection systems. The use of lithographic images is critical in this approach, since it ensures that optical system measurements are obtained during the system\u27s standard operation. A mathematical framework is developed that translates image errors into the Zernike polynomial representation, commonly used in the description of optical aberrations. The wavefront is decomposed into a set of orthogonal basis functions, and coefficients for the set are estimated from image-based measurements. A solution is deduced from multiple image measurements by using a combination of different image sets. Correlations between aberrations and phase wheel image characteristics are modeled based on physical simulation and statistical analysis. The approach uses a well-developed rigorous simulation tool to model significant aspects of lithography processes to assess how aberrations affect the final image. The aberration impact on resulting image shapes is then examined and approximations identified so the aberration computation can be made into a fast compact model form. Wavefront reconstruction examples are presented together with corresponding numerical results. The detailed analysis is given along with empirical measurements and a discussion of measurement capabilities. Finally, the impact of systematic errors in exposure tool parameters is measureable from empirical data and can be removed in the calibration stage of wavefront analysis

    Novel techniques for dopant profile monitoring

    Get PDF

    Enabling Capillary Self-Assembly for Microsystem Integration

    Get PDF
    Efficient and precise assembly of very-large quantities of sub-millimeter-sized devices onto pre-processed substrates is presently a key frontier for microelectronics, in its aspiration to large-scale mass production of devices with new functionalities and applications (e.g. thin dies embedded into flexible substrates, 3D microsystem integration). In this perspective, on the one hand established pick&place assembly techniques may be unsuitable, due to a trade-off between throughput and placement accuracy and to difficulties in predictably handling very-small devices. On the other hand, self-assembly processes are massively parallel, may run unsupervised and allow contactless manipulation of objects. The convergence between robotic assembly and self-assembly, epitomized by capillarity-enhanced flip-chip assembly, can therefore enable an ideal technology meeting short-to-medium-term electronic packaging and assembly needs. The objective of this thesis is bridging the gap between academic proofs-of- concept of capillary self-assembly and its industrial application. Our work solves several issues relevant to capillary self-assembly of thin dies onto preprocessed substrates. Very-different phenomena and aspects of both scientific and technological interest coexist in such a broad context. They were tackled both experimentally and theoretically. After a critical review of the state-of-the-art in microsystem integration, a complete quasi-static study of lateral capillary meniscus forces is presented. Our experimental setup enables also a novel method to measure the contact angle of liquids. Recessed binding sites are introduced to obtain perfectly-conformal fluid dip-coating of patterned surfaces, which enables the effective and robust coding of geometrical information into binding sites to direct the assembly of parts. A general procedure to establish solder-mediated electro-mechanical interconnections between parts and substrate is validated. Smart surface chemistries are invoked to solve the issue of mutual adhesion between parts during the capillary self-assembly process. Two chemical kinetic-inspired analytic models of fluidic self-assembly are presented and criticized to introduce a novel agent-based model of the process. The latter approach allows realistic simulations by taking into account spatial factors and collision dynamics. Concluding speculations propose envisioned solutions to residual open issues and further perspectives for this field of rapidly-growing importance

    NASA Tech Briefs Index, 1976

    Get PDF
    Abstracts of new technology derived from the research and development activities of the National Aeronautics and Space Administration are presented. Emphasis is placed on information considered likely to be transferrable across industrial, regional, or disciplinary lines. Subject matter covered includes: electronic components and circuits; electronic systems; physical sciences; materials; life sciences; mechanics; machinery; fabrication technology; and mathematics and information sciences

    Index to 1983 NASA Tech Briefs, volume 8, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1983 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    NASA Tech Briefs, May 1991

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    NASA Space Engineering Research Center Symposium on VLSI Design

    Get PDF
    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers

    An ultrasonic system for intravascular measurement and visualisation of anatomical structures and blood flow

    Get PDF
    Imperial Users onl
    corecore