81 research outputs found

    On the Determinism of Multi-core Processors

    Get PDF
    Hard real time systems are evolving in order to respond to the increasing demand in complex functionalities while taking advantage of newer hardware. Software development for safety critical systems has to comply with strict requirements that will facilitate the certification process. During this process, each part of the system is evaluated, requiring a certain level of assurance in order to provide confidence in the product. In particular there must be a level of confidence that the system behaves deterministically that may be based on functionality, resources and time. The success of system verification depends greatly on the capacity to determine its exact behavior. Nonetheless, hardware evolved in order to maximize the average computation power throughput with little to no regard to the deterministic aspect. Therefore modern architectural features of processors, like pipelines, cache memories and co-processors, make it hard to verify that all the needed properties are respected. The multi-core is furthermore difficult to analyze as the architecture employs mechanisms that compromise strong spatial and temporal partitioning when using shared resources without rigorous access control like shared caches or shared input/outputs. In this paper we identify and analyze the main sources of nondeterminism of the multi-cores with regard to the timing estimation. Precise determination of the worst case execution time is a challenging task even in single-core architectures. The problems are accentuated in the multi-core context mainly due to the resource sharing that can lead to highly complex interactions or to nondeterminism. Most of the units that generate behaviors that are hard to take into account can be deactivated, but it is not always easy to predict the impact on the performance. Nevertheless some of the features cannot be disabled (such as the out of order execution or some nondeterministic crossbar access policies) which leads to the invalidation of the respective platform for applications with high criticality level. We will address the problematic units, propose configuration or architecture guidelines and estimate their impact on the performance and determinism of the system

    Integrated Worst-Case Execution Time Estimation of Multicore Applications

    Get PDF
    Worst-case execution time (WCET) analysis has reached a high level of precision in the analysis of sequential programs executing on single-cores. In this paper we extend a state-of-the-art WCET analysis technique to compute tight WCETs estimates of parallel applications running on multicores. The proposed technique is termed integrated because it considers jointly the sequential code regions running on the cores and the communications between them. This allows to capture the hardware effects across code regions assigned to the same core, which significantly improves analysis precision. We demonstrate that our analysis produces tighter execution time bounds than classical techniques which first determine the WCET of sequential code regions and then compute the global response time by integrating communication costs. Comparison is done on two embedded control applications, where the gain is of 21% on average

    The Heptane Static Worst-Case Execution Time Estimation Tool

    Get PDF
    Estimation of worst-case execution times (WCETs) is required to validate the temporal behavior of hard real time systems. Heptane is an open-source software program that estimates upper bounds of execution times on MIPS and ARM v7 architectures, offered to the WCET estimation community to experiment new WCET estimation techniques. The software architecture of Heptane was designed to be as modular and extensible as possible to facilitate the integration of new approaches. This paper is devoted to a description of Heptane, and includes information on the analyses it implements, how to use it and extend it

    OTAWA: An Open Toolbox for Adaptive WCET Analysis

    Get PDF
    International audienceThe analysis of worst-case execution times has become mandatory in the design of hard real-time systems: it is absolutely necessary to know an upper bound of the execution time of each task to determine a task schedule that insures that deadlines will all be met. The OTAWA toolbox presented in this paper has been designed to host algorithms resulting from research in the domain of WCET analysis so that they can be combined to compute tight WCET estimates. It features an abstraction layer that decouples the analyses from the target hardware and from the instruction set architecture, as well as a set of functionalities that facilitate the implementation of new approaches

    Probabilistic Worst-Case Timing Analysis: Taxonomy and Comprehensive Survey

    Get PDF
    "© ACM, 2019. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Computing Surveys, {VOL 52, ISS 1, (February 2019)} https://dl.acm.org/doi/10.1145/3301283"[EN] The unabated increase in the complexity of the hardware and software components of modern embedded real-time systems has given momentum to a host of research in the use of probabilistic and statistical techniques for timing analysis. In the last few years, that front of investigation has yielded a body of scientific literature vast enough to warrant some comprehensive taxonomy of motivations, strategies of application, and directions of research. This survey addresses this very need, singling out the principal techniques in the state of the art of timing analysis that employ probabilistic reasoning at some level, building a taxonomy of them, discussing their relative merit and limitations, and the relations among them. In addition to offering a comprehensive foundation to savvy probabilistic timing analysis, this article also identifies the key challenges to be addressed to consolidate the scientific soundness and industrial viability of this emerging field.This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P, the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 772773), and the HiPEAC Network of Excellence. Jaume Abella was partially supported by the Ministry of Economy and Competitiveness under a Ramon y Cajal postdoctoral fellowship (RYC-2013-14717). Enrico Mezzetti has been partially supported by the Spanish Ministry of Economy and Competitiveness under Juan de la Cierva-Incorporación postdoctoral fellowship No. IJCI-2016-27396.Cazorla, FJ.; Kosmidis, L.; Mezzetti, E.; Hernández Luz, C.; Abella, J.; Vardanega, T. (2019). Probabilistic Worst-Case Timing Analysis: Taxonomy and Comprehensive Survey. ACM Computing Surveys. 52(1):1-35. https://doi.org/10.1145/3301283S13552

    HWP: Hardware Support to Reconcile Cache Energy, Complexity, Performance and WCET Estimates in Multicore Real-Time Systems

    Get PDF
    High-performance processors have deployed multilevel cache (MLC) systems for decades. In the embedded real-time market, the use of MLC is also on the rise, with processors for future systems in space, railway, avionics and automotive already featuring two or more cache levels. One of the most critical elements for MLC is the write policy that not only affects several key metrics such as performance, WCET estimates, energy/power, and reliability, but also the design of complexity-prone cache coherence protocol and cache reliability solutions. In this paper we make an extensive analysis of existing write policies, namely write-through (WT) and write-back (WB). In the context of the real-time domain, we show that no write policy is superior for all metrics: WT simplifies the design of the coherence and reliability solutions at the cost of performance, WCET, and energy; while WB improves performance and energy results, but complicates cache design. To take the best of each policy, we propose Hybrid Write Policy (HWP) a low-complexity hardware mechanism that reconciles the benefits of WT in terms of simplifying the cache design (e.g. coherence solution) and the benefits of WB in improved average performance and WCET estimates as the pressure on the interconnection network increases. Guaranteed performance results show that HWP scales with core count similar to WB. Likewise, HWP reduces cache energy usage of WT, to levels similar to those of WB. These benefits are obtained while retaining the reduced coherence complexity of WT, in contrast to high coherence costs under WB

    Impact of DM-LRU on WCET: A Static Analysis Approach

    Get PDF
    Cache memories in modern embedded processors are known to improve average memory access performance. Unfortunately, they are also known to represent a major source of unpredictability for hard real-time workload. One of the main limitations of typical caches is that content selection and replacement is entirely performed in hardware. As such, it is hard to control the cache behavior in software to favor caching of blocks that are known to have an impact on an application\u27s worst-case execution time (WCET). In this paper, we consider a cache replacement policy, namely DM-LRU, that allows system designers to prioritize caching of memory blocks that are known to have an important impact on an application\u27s WCET. Considering a single-core, single-level cache hierarchy, we describe an abstract interpretation-based timing analysis for DM-LRU. We implement the proposed analysis in a self-contained toolkit and study its qualitative properties on a set of representative benchmarks. Apart from being useful to compute the WCET when DM-LRU or similar policies are used, the proposed analysis can allow designers to perform WCET impact-aware selection of content to be retained in cache

    An Overview of Approaches Towards the Timing Analysability of Parallel Architecture

    Get PDF
    In order to meet performance/low energy/integration requirements, parallel architectures (multithreaded cores and multi-cores) are more and more considered in the design of embedded systems running critical software. The objective is to run several applications concurrently. When applications have strict real-time constraints, two questions arise: a) how can the worst-case execution time (WCET) of each application be computed while concurrent applications might interfere? b)~how can the tasks be scheduled so that they are guarantee to meet their deadlines? The second question has received much attention for several years~cite{CFHS04,DaBu11}. Proposed schemes generally assume that the first question has been solved, and in addition that they do not impact the WCETs. In effect, the first question is far from been answered even if several approaches have been proposed in the literature. In this paper, we present an overview of these approaches from the point of view of static WCET analysis techniques
    • …
    corecore