23 research outputs found

    A vision system for mobile maritime surveillance platforms

    Get PDF
    Mobile surveillance systems play an important role to minimise security and safety threats in high-risk or hazardous environments. Providing a mobile marine surveillance platform with situational awareness of its environment is important for mission success. An essential part of situational awareness is the ability to detect and subsequently track potential target objects.Typically, the exact type of target objects is unknown, hence detection is addressed as a problem of finding parts of an image that stand out in relation to their surrounding regions or are atypical to the domain. Contrary to existing saliency methods, this thesis proposes the use of a domain specific visual attention approach for detecting potential regions of interest in maritime imagery. For this, low-level features that are indicative of maritime targets are identified. These features are then evaluated with respect to their local, regional, and global significance. Together with a domain specific background segmentation technique, the features are combined in a Bayesian classifier to direct visual attention to potential target objects.The maritime environment introduces challenges to the camera system: gusts, wind, swell, or waves can cause the platform to move drastically and unpredictably. Pan-tilt-zoom cameras that are often utilised for surveillance tasks can adjusting their orientation to provide a stable view onto the target. However, in rough maritime environments this requires high-speed and precise inputs. In contrast, omnidirectional cameras provide a full spherical view, which allows the acquisition and tracking of multiple targets at the same time. However, the target itself only occupies a small fraction of the overall view. This thesis proposes a novel, target-centric approach for image stabilisation. A virtual camera is extracted from the omnidirectional view for each target and is adjusted based on the measurements of an inertial measurement unit and an image feature tracker. The combination of these two techniques in a probabilistic framework allows for stabilisation of rotational and translational ego-motion. Furthermore, it has the specific advantage of being robust to loosely calibrated and synchronised hardware since the fusion of tracking and stabilisation means that tracking uncertainty can be used to compensate for errors in calibration and synchronisation. This then completely eliminates the need for tedious calibration phases and the adverse effects of assembly slippage over time.Finally, this thesis combines the visual attention and omnidirectional stabilisation frameworks and proposes a multi view tracking system that is capable of detecting potential target objects in the maritime domain. Although the visual attention framework performed well on the benchmark datasets, the evaluation on real-world maritime imagery produced a high number of false positives. An investigation reveals that the problem is that benchmark data sets are unconsciously being influenced by human shot selection, which greatly simplifies the problem of visual attention. Despite the number of false positives, the tracking approach itself is robust even if a high number of false positives are tracked

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 05)

    Get PDF
    Bibliographies and abstracts are listed for 1363 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and July 31, 1992. Topics covered include technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion and solar power satellite systems

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Design of a portable observatory control system

    Get PDF
    In this thesis, we synthesize the development of a new concept of operation of small robotic telescopes operated over the Internet. Our design includes a set of improvements in control algorithmic and hardware of several critical points of the list of subsystems necessary to obtain suitable data from a telescope. We can synthesize the principal contributions of this thesis into five independent innovations: - An advanced drive closed-loop control: We designed an innovative hardware and software solution for controlling a telescope position at high precision and high robustness. - A complete Telescope Control System (TCS): We implemented a light and portable software using advanced astronomical algorithms libraries for optimally compute in real-time the telescope positioning. This software also provides a new multiple simultaneous pointing models system using state machines which allows reaching higher pointing precision and longer exposure times with external guiding telescopes. - A distributed software architecture (CoolObs): CoolObs is the implementation of a ZeroC-ICE framework allowing the control, interaction, and communication of all the peripherals present in an astronomical observatory. - A patented system for dynamic collimation of optics: SAPACAN is a mechanical parallel arrangement and its associated software used for active compensation of low-frequency aberration variations in small telescopes. - Collimation estimation algorithms: A sensor-less AO algorithm have been applied by the analysis of images obtained with the field camera. This algorithm can detect effects of lousy collimation. The measured misalignments can later feed corrections to a device like SAPACAN. Due to the constant presence of new technologies in the field of astronomy, it had been one of the first fields to introduce material which was not democratized at this time such as Coupled Charged Devices, internet, adaptive optics, remote and robotic control of devices. However, every time one of these new technologies was included in the field it was necessary to design software protocol according to the epoch’s state of the art software. Then with the democratization of the same devices, years after the definition of their protocols, the same communication rules tend to be used to keep backward compatibility with old - and progressively unused- devices. When using lots of cumulated software knowledge such as with robotic observing, we can dig in several nonsenses in the commonly used architectures due to the previously explained reasons. The described situation is the reason why we will propose as follows a new concept of considering an observatory as an entity and not a separated list of independent peripherals. We will describe the application of this concept in the field or robotic telescopes and implement it in various completely different examples to show its versatility and robustness. First of all, we will give a short introduction of the astronomical concepts which will be used all along the document, in a second part, we will expose a state of the art of the current solutions used in the different subsystems of an observing facility and explain why they fail in being used in small telescopes. The principal section will be dedicated to detail and explain each of the five innovations enumerated previously, and finally, we will present the fabrication and integration of these solutions. We will show here how the joint use of all of them allowed obtaining satisfactory outstanding results in the robotic use of a new prototype and on the adaptation on several existing refurbished telescopes. Finally, we dedicate the last chapter of this thesis to resuming the conclusions of our work.En esta tesis, presentamos el desarrollo de un nuevo concepto de operación de telescopio robótica operados a través de Internet. Nuestro diseño incluye un conjunto de mejoras de los algoritmos de control y hardware de varios puntos críticos de la lista de subsistemas necesarios para obtener datos de calidad científica con un telescopio. Podemos sintetizar las principales contribuciones de esta tesis en cinco innovaciones independientes: - Un control de motor avanzado en bucle cerrado: Diseñamos un hardware y software innovadores para controlar la posición y movimiento fino de un telescopio con alta precisión y alta robustez. - Un software de control de telescopio (TCS) integrado: Implementamos un software ligero y portátil que ocupa bibliotecas de algoritmos astronómicos avanzados para calcular de manera óptima y en tiempo real la posición teórica del telescopio. Este software también proporciona un software innovador de modelo de pointing múltiples simultáneos. Esto permite alcanzar una mayor precisión de seguimiento y así ocupar tiempos de integración más importante ocupando un telescopio de guía mecánicamente apartado al telescopio principal. - Una arquitectura de software distribuido (CoolObs): CoolObs es una implementación de software ocupando la plataforma de desarrollo ZeroC-ICE la cual permite el control, la interacción y la comunicación de todos los periféricos presentes en un observatorio astronómico. - Un sistema patentado para la colimación dinámica de la óptica: SAPACAN es un sistema mecánico de movimiento paralelo y su software asociado. Se puede ocupar para compensar activamente las aberraciones ópticas de bajo orden en pequeños telescopios. - Algoritmos de estimación de colimación: Se desarrolló un algoritmo de óptica adaptiva sin sensor en base al análisis de imágenes obtenidas con una cámara cerca del plano focal del telescopio. Este algoritmo puede detectar efectos de mala colimación de las ópticas. Los desajustes, una vez medidos, pueden posteriormente ser aplicados como correcciones a un dispositivo como SAPACAN. Astronomía es un terreno propicio al desarrollo de nuevas tecnologías y, debido a esto, los protocolos de comunicación entre periféricos pueden ser obsoletos porque se han escritos en etapas tempranas de existencia de estas nuevas tecnologías. Las mejoras se han hecho de a poco para mantener la compatibilidad de los sistemas ya existentes, ocupando un planteamiento general de la problemática de control de telescopios robóticos, proponemos un nuevo concepto de observatorio robótico visto como una entidad y no una lista de periféricos independientes. A lo largo de esta tesis, describiremos la aplicación de este concepto en el campo de telescopios robóticos e implementarlo en varios sistemas independientes y variados para mostrar la versatilidad y robustez de la propuesta.Postprint (published version
    corecore