31,823 research outputs found

    Precise Adjacent Margin Loss for Deep Face Recognition

    Get PDF

    Hidden Two-Stream Convolutional Networks for Action Recognition

    Full text link
    Analyzing videos of human actions involves understanding the temporal relationships among video frames. State-of-the-art action recognition approaches rely on traditional optical flow estimation methods to pre-compute motion information for CNNs. Such a two-stage approach is computationally expensive, storage demanding, and not end-to-end trainable. In this paper, we present a novel CNN architecture that implicitly captures motion information between adjacent frames. We name our approach hidden two-stream CNNs because it only takes raw video frames as input and directly predicts action classes without explicitly computing optical flow. Our end-to-end approach is 10x faster than its two-stage baseline. Experimental results on four challenging action recognition datasets: UCF101, HMDB51, THUMOS14 and ActivityNet v1.2 show that our approach significantly outperforms the previous best real-time approaches.Comment: Accepted at ACCV 2018, camera ready. Code available at https://github.com/bryanyzhu/Hidden-Two-Strea

    Siamese Instance Search for Tracking

    Get PDF
    In this paper we present a tracker, which is radically different from state-of-the-art trackers: we apply no model updating, no occlusion detection, no combination of trackers, no geometric matching, and still deliver state-of-the-art tracking performance, as demonstrated on the popular online tracking benchmark (OTB) and six very challenging YouTube videos. The presented tracker simply matches the initial patch of the target in the first frame with candidates in a new frame and returns the most similar patch by a learned matching function. The strength of the matching function comes from being extensively trained generically, i.e., without any data of the target, using a Siamese deep neural network, which we design for tracking. Once learned, the matching function is used as is, without any adapting, to track previously unseen targets. It turns out that the learned matching function is so powerful that a simple tracker built upon it, coined Siamese INstance search Tracker, SINT, which only uses the original observation of the target from the first frame, suffices to reach state-of-the-art performance. Further, we show the proposed tracker even allows for target re-identification after the target was absent for a complete video shot.Comment: This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition, 201
    • …
    corecore