201 research outputs found

    Remote Sensing and Estimation

    Get PDF
    Contains table of contents for Section 4, and reports on six research projects.MIT Lincoln Laboratory Agreement CX-19383MIT Lincoln Laboratory Agreement BX-6178MIT Lincoln Laboratory Agreement BX-6433National Aeronautics and Space Administration/Goddard Space Flight Center Grant NAS5-31376National Aeronautics and Space Administration/Goddard Space Flight Center Grant NAG5-10MIT Leaders for Manufacturing Progra

    Passive millimeter-wave retrieval of global precipitation utilizing satellites and a numerical weather prediction model

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 229-234).This thesis develops and validates the MM5/TBSCAT/F([lambda]) model, composed of a mesoscale numerical weather prediction (NWP) model (MM5), a two-stream radiative transfer model (TBSCAT), and electromagnetic models for icy hydrometeors (F([lambda])), to be used as a global precipitation ground-truth for evaluating alternative millimeter-wave satellite designs and for developing methods for millimeter-wave precipitation retrieval and assimilation. The model's predicted millimeter-wave atmospheric radiances were found to statistically agree with those observed by satellite instruments [Advanced Microwave Sounding Unit-A/B (AMSU-A/B)] on the United States National Ocean and Atmospheric Administration NOAA-15, -16, and -17 satellites over 122 global representative storms. Whereas such radiance agreement was found to be sensitive to assumptions in MM5 and the radiative transfer model, precipitation retrieval accuracies predicted using the MM5/TBSCAT/F([lambda]) model were found to be robust to the assumptions.(cont.) Appropriate specifications for geostationary microwave sounders and their precipitation retrieval accuracies were studied. It was found that a 1.2-m micro-scanned filled-aperture antenna operating at 118/166/183/380/425 GHz, which is relatively inexpensive, simple to build, technologically mature, and readily installed on a geostationary satellite, could provide useful observation of important global precipitation with ~20-km resolution every 15 minutes. AMSU global precipitation retrieval algorithms for retrieving surface precipitation rate, peak vertical wind, and water-paths for rainwater, snow, graupel, cloud water, cloud ice, and the sum of rainwater, snow, and graupel, over non-icy surfaces were developed separately using a statistical ensemble of global precipitation predicted by the MM5/TBSCAT/F([lambda]) model. Different algorithms were used for land and sea, where principal component analysis was used to attenuate unwanted noises, such as surface effects and angle dependence. The algorithms were found to perform reasonably well for all types of precipitation as evaluated against MM5 ground-truth. The algorithms also work over land with snow and sea ice, but with a strong risk of false detections. AMSU surface precipitation rates retrieved using the algorithm developed in this thesis reasonably agree with those retrieved for the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) aboard the Aqua satellite over both land and sea.(cont.) Surface precipitation rates retrieved using the Advanced Microwave Sounding Unit (AMSU) aboard NOAA-15 and -16 satellites were further compared with four similar products derived from other systems that also observed the United States Great Plains (USGP) during the summer of 2004. These systems include AMSR-E aboard the Aqua satellite, the Special Sensor Microwave/Imager (SSM/I) aboard the Defense Meteorological Satellite Program (DMSP) F-13, -14, and -15 satellites, the passive Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) aboard the TRMM satellite, and a surface precipitation rate product (NOWRAD), produced and marketed by Weather Services International Corporation (WSI) using observations from the Weather Surveillance Radar-1988 Doppler (WSR-88D) systems of the Next-Generation Weather Radar (NEXRAD) program. The results show the reasonable agreement among these surface precipitation rate products where the difference is mostly in the retrieval resolution, which depends on instruments' characteristics. A technique for assimilating precipitation information from observed millimeter-wave radiances to MM5 model was proposed. Preliminary study shows that wind and other correction techniques could help align observations at different times so that information from observed radiances is used at appropriate locations.by Chinnawat Surussavadee.Ph.D

    An Update on Oceanic Precipitation Rate and its Zonal Distribution in Light of Advanced Observations from Space

    Get PDF
    This study contributes to the estimation of the global mean and zonal distribution of oceanic precipitation rate using complementary information from advanced precipitation measuring sensors and provides an independent reference to assess current precipitation products. Precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and CloudSat cloud profiling radar (CPR) were merged, as the two complementary sensors yield an unprecedented range of sensitivity to quantify rainfall from drizzle through the most intense rates. At higher latitudes, where TRMM PR does not exist, precipitation estimates from Aqua's Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) complemented CloudSat CPR to capture intense precipitation rates. The high sensitivity of CPR allows estimation of snow rate, an important type of precipitation at high latitudes, not directly observed in current merged precipitation products. Using the merged precipitation estimate from the CloudSat, TRMM, and Aqua platforms (this estimate is abbreviated to MCTA), the authors' estimate for 3-yr (2007-09) nearglobal (80degS-80degN) oceanic mean precipitation rate is approx. 2.94mm/day. This new estimate of mean global ocean precipitation is about 9% higher than that of the corresponding Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) value (2.68mm/day) and about 4% higher than that of the Global Precipitation Climatology Project (GPCP; 2.82mm/day). Furthermore, MCTA suggests distinct differences in the zonal distribution of precipitation rate from that depicted in GPCPand CMAP, especially in the Southern Hemisphere

    An Overview of the TROPICS NASA Earth Venture Mission

    Get PDF
    The Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission was selected by NASA as part of the Earth Venture-Instrument (EVI-3) program. The overarching goal for TROPICS is to provide nearly all-weather observations of 3D temperature and humidity, as well as cloud ice and precipitation horizontal structure, at high temporal resolution to conduct high-value science investigations of tropical cyclones. TROPICS will provide rapid-refresh microwave measurements (median refresh rate better than 60 min for the baseline mission) which can be used to observe the thermodynamics of the troposphere and precipitation structure for storm systems at the mesoscale and synoptic scale over the entire storm life cycle. TROPICS comprises six Cube-Sats in three low-Earth orbital planes. Each CubeSat will host a high-performance radiometer to provide temperature profiles using seven channels near the 118.75 GHz oxygen absorption line, water vapour profiles using three channels near the 183 GHz water vapour absorption line, imagery in a single channel near 90 GHz for precipitation measurements (when combined with higher-resolution water vapour channels), and a single channel near 205 GHz which is more sensitive to precipitation-sized ice particles. This observing system offers an unprecedented combination of horizontal and temporal resolution to measure environmental and inner-core conditions for tropical cyclones on a nearly global scale and is a major leap forward in the temporal resolution of several key parameters needed for assimilation into advanced data assimilation systems capable of utilizing rapid-update radiance or retrieval data.Launch readiness is currently projected for late 2019

    The science benefits of and the antenna requirements for microwave remote sensing from geostationary orbit

    Get PDF
    The primary objective of the Large Space Antenna (LSA) Science Panel was to evaluate the science benefits that can be realized with a 25-meter class antenna in a microwave/millimeter wave remote sensing system in geostationary orbit. The panel concluded that a 25-meter or larger antenna in geostationary orbit can serve significant passive remote sensing needs in the 10 to 60 GHz frequency range, including measurements of precipitation, water vapor, atmospheric temperature profile, ocean surface wind speed, oceanic cloud liquid water content, and snow cover. In addition, cloud base height, atmospheric wind profile, and ocean currents can potentially be measured using active sensors with the 25-meter antenna. Other environmental parameters, particularly those that do not require high temporal resolution, are better served by low Earth orbit based sensors

    Radio Astronomy

    Get PDF
    Contains table of contents for Section 4 and reports on six research projects.MIT Lincoln Laboratory Agreement BX-6178MIT Lincoln Laboratory Agreement BX-6433National Aeronautics and Space Administration/Goddard Space Flight Center Grant NAS5-31376MIT Lincoln Laboratory Agreement CX-19383National Aeronautics and Space Administration/Goddard Space Flight Center Grant NAG5-10MIT Leaders for Manufacturing Progra

    Space observation for climate change studies

    Get PDF
    Climate change is associated with earth radiation budget that depends upon in-comming solar radiation, surface albedo and radiative forcing by green house gases. Human activities are contributing to climate change by causing changes in Earth's atmosphere (greenhouse gases, aerosols) and biosphere (deforestation, urbanization, irrigation). Long term and precise measurements from calibrated global observation constellation is a vital component in climate system modelling. Space based records of biosphere, cryosphere, hydrosphere and atmosphere over more than three decades are providing important information on climate change. Space observations are an important source of climate variables due to multi scale simultaneous observation (local, regional, global) capability with temporal revisit in tune with requirements of land, ocean and atmospheric processes. Essential climatic variables that can be measured from space include atmosphere (upper air temperature, water vapour, precipitation, clouds, aerosols & GHGs etc.), ocean (sea ice, sea level, SST, salinity, ocean colour etc.) and land (snow, glacier, albedo, biomass, LAI/fAPAR, soil moisture etc.). India's Earth Observation Programme addresses various aspects of land, ocean and atmospheric applications. The present and planned missions such as Resourcesat-1, Oceansat-2, RISAT, Megha-Tropiques, INSAT-3D, SARAL, Resourcesat-2, Geo-HR Imager and I-STAG would help in understanding the issues related to climate changes. The paper reviews observational needs, space observation systems and studies that have been carried out at ISRO towards mapping/ detecting the indicators of climate change, monitoring the agents of climate change and understanding the impact of climate change, in national perspectives. Studies to assess glacier retreat, changes in polar ice cover, timberline change and coral bleaching are being carried out towards monitoring of climate change indicators. Spatial methane inventories from paddy rice, livestock and wetlands have been prepared and seasonal pattern of CO2, and CO have been analysed. Future challenges in space observations include design and placement of adequate and accurate multi-platform observational system to monitor all parameters related to various interaction processes and generation of long term calibrated climate data records pertaining to land ocean and atmosphere

    Laser sounding from space; report of the ESA Technology Working Group on Space Laser Sounding and Ranging

    Full text link
    The purpose and principles of spaceborne lidar are described, giving particular attention to candidates for space deployment, including simple backscatter lidar for measuring of cloud top height, cloud extend and optical properties, differential absorption lidar providing high vertical resolution measurements of humidity, temperature and pressure, a wind profiling lidar with the unique capability of improved weather forecasting and global dynamics, and a ranging and altimeter lidar for very accurate measurement of surface features, including ground, sea and ice cap height for solid earth studies

    Climate change studies using space based observation

    Get PDF
    Climate change is associated with earth radiation budget that depends upon incoming solar radiation, surface albedo and radiative forcing by greenhouse gases. Human activities are contributing to climate change by causing changes in Earth's atmosphere (greenhouse gases, aerosols) and biosphere (deforestation, urbanization, irrigation). Long term and precise measurements from calibrated global observation constellation is a vital component in climate system modelling. Space based records of biosphere, cryosphere, hydrosphere and atmosphere over more than three decades are providing important information on climate change. Space observations are an important source of climate variables due to multi scale simultaneous observation (local, regional, and global scales) capability with temporal revisit in tune with requirements of land, ocean and atmospheric processes. Essential climatic variables that can be measured from space include atmosphere (upper air temperature, water vapour, precipitation, clouds, aerosols, GHGs etc.), ocean (sea ice, sea level, SST, salinity, ocean colour etc.) and land (snow, glacier, albedo, biomass, LAI/fAPAR, soil moisture etc.). India's Earth Observation Programme addresses various aspects of land, ocean and atmospheric applications. The present and planned missions such as Resourcesat-1, Oceansat-2, RISAT, Megha-Tropiques, INSAT-3D, SARAL, Resourcesat-2, Geo-HR Imager and series of Environmental satellites (I-STAG) would help in understanding the issues related to climate changes. The paper reviews observational needs, space observation systems and studies that have been carried out at ISRO (Indian Space Research Organization) towards mapping/detecting the indicators of climate change, monitoring the agents of climate change and understanding the impact of climate change, in national perspectives. Studies to assess glacier retreat, changes in polar ice cover, timberline change and coral bleaching are being carried out towards monitoring of climate change indicators. Spatial methane inventories from paddy rice, livestock and wetlands have been prepared and seasonal pattern of CO2, and CO have been analysed. Future challenges in space observations include design and placement of adequate and accurate multi-platform observational systems to monitor all parameters related to various interaction processes and generation of long term calibrated climate data records pertaining to land ocean and atmosphere

    VAS Demonstration Sounding Workshop: The Proceedings of a satellite sounding workshop

    Get PDF
    Retrieval techniques that yield satellite derived temperature and moisture profiles are considered, with emphasis on TIROS-N and VISSR atmospheric sounder measurements. Topics covered include operational sounding, colocation concepts, correcting cloud errors, and the First GARP Global Experiment
    • …
    corecore