2 research outputs found

    Preallocated Duplicate Name Prefix Detection Mechanism Using Naming Pool in CCN Based Mobile IoT Networks

    No full text
    As the number of mobile devices and IoT (internet of things) devices has explosively increased, various contents are created anytime and anywhere. To meet such trend, current internet architecture has exposed many limitations such as high control overhead due to multistaged address resolution, frequent location updates, and network congestion. Recently, information centric networking (ICN) is considered as new networking architecture to redesign current internet’s content exchange paradigm. In current ICN architecture, whenever a mobile node moves to a new domain, it needs long latency to configure and confirm the temporary name prefix. So, this paper presents an efficient name prefix configuration mechanism in mobile CCN to reduce the latency needed for the name prefix configuration during MCS’s handover. From the performance analysis, the proposed mechanism is shown to provide lower control overhead and lower resource consumption

    Energy-efficient Transitional Near-* Computing

    Get PDF
    Studies have shown that communication networks, devices accessing the Internet, and data centers account for 4.6% of the worldwide electricity consumption. Although data centers, core network equipment, and mobile devices are getting more energy-efficient, the amount of data that is being processed, transferred, and stored is vastly increasing. Recent computer paradigms, such as fog and edge computing, try to improve this situation by processing data near the user, the network, the devices, and the data itself. In this thesis, these trends are summarized under the new term near-* or near-everything computing. Furthermore, a novel paradigm designed to increase the energy efficiency of near-* computing is proposed: transitional computing. It transfers multi-mechanism transitions, a recently developed paradigm for a highly adaptable future Internet, from the field of communication systems to computing systems. Moreover, three types of novel transitions are introduced to achieve gains in energy efficiency in near-* environments, spanning from private Infrastructure-as-a-Service (IaaS) clouds, Software-defined Wireless Networks (SDWNs) at the edge of the network, Disruption-Tolerant Information-Centric Networks (DTN-ICNs) involving mobile devices, sensors, edge devices as well as programmable components on a mobile System-on-a-Chip (SoC). Finally, the novel idea of transitional near-* computing for emergency response applications is presented to assist rescuers and affected persons during an emergency event or a disaster, although connections to cloud services and social networks might be disturbed by network outages, and network bandwidth and battery power of mobile devices might be limited
    corecore