385 research outputs found

    Understanding object feature binding through experimentation as a precursor to modelling

    Get PDF
    In order to explore underlying brain mechanisms and to further understand how and where object feature binding occurs, psychophysical data are analysed and will be modelled using an attractor network. This paper describes psychophysical work and an outline of the proposed model. A rapid serial visual processing paradigm with a post-cue response task was used in three experimental conditions: spatial, temporal and spatio-temporal. Using a ‘staircase’ procedure, stimulus onset asynchrony for each observer for each condition was set in practice trails to achieve ~50% error rates. Results indicate that spatial location information helps bind objects features and temporal location information hinders it. Our expectation is that the proposed neural model will demonstrate a binding mechanism by exhibiting regions of enhanced activity in the location of the target when presented with a partial post-cue. In future work, the model could be lesioned so that neuropsychological phenomena might be exhibited. In such a way, the mechanisms underlying object feature binding might be clarified

    Positive emotion broadens attention focus through decreased position-specific spatial encoding in early visual cortex: evidence from ERPs

    Get PDF
    Recent evidence has suggested that not only stimulus-specific attributes or top-down expectations can modulate attention selection processes, but also the actual mood state of the participant. In this study, we tested the prediction that the induction of positive mood can dynamically influence attention allocation and, in turn, modulate early stimulus sensory processing in primary visual cortex (V1). High-density visual event-related potentials (ERPs) were recorded while participants performed a demanding task at fixation and were presented with peripheral irrelevant visual textures, whose position was systematically varied in the upper visual field (close, medium, or far relative to fixation). Either a neutral or a positive mood was reliably induced and maintained throughout the experimental session. The ERP results showed that the earliest retinotopic component following stimulus onset (C1) strongly varied in topography as a function of the position of the peripheral distractor, in agreement with a near-far spatial gradient. However, this effect was altered for participants in a positive relative to a neutral mood. On the contrary, positive mood did not modulate attention allocation for the central (task-relevant) stimuli, as reflected by the P300 component. We ran a control behavioral experiment confirming that positive emotion selectively impaired attention allocation to the peripheral distractors. These results suggest a mood-dependent tuning of position-specific encoding in V1 rapidly following stimulus onset. We discuss these results against the dominant broaden-and-build theory

    Focused Attention vs. Open Monitoring: An Event-Related Potential Study of Emotion Regulation by Two Distinct Forms of Mindfulness Meditation

    Get PDF
    This study investigated the effects of two novel forms of 8-week mindfulness meditation training, focused attention (FA) and open monitoring (OM), relative to an established training, mindfulness-based cognitive therapy (MBCT), on early emotional reactivity to negative emotional images as assessed by electroencephalography (EEG). Data on the late-positive potential (LPP) were analyzed to address whether the three mindfulness interventions attenuated the LPP from pre- to post-intervention, and if significant differences existed between groups in LPP at post-intervention. Rather than an attenuation, results indicated an average increase in LPP amplitude from pre- to post-intervention. No significant differences were found in the LPP between the training conditions at post-intervention. These results provide preliminary evidence that mindfulness training in novice practitioners may heighten initial emotional reactivity. Further, well-designed research is needed to examine a wider range of neural responses to better understand emotion regulation process effects of different forms of mindfulness training

    Meditation increases the depth of information processing

    Get PDF
    During meditation, practitioners are required to center their attention on a specific object for extended periods of time. When their thoughts get diverted, they learn to quickly disengage from the distracter. We hypothesized that learning to respond to the dual demand of engaging attention on specific objects and disengaging quickly from distracters enhances the efficiency by which meditation practitioners can allocate attention. We tested this hypothesis in a global-to-local task while measuring electroencephalographic activity from a group of eight highly trained Buddhist monks and nuns and a group of eight age and education matched controls with no previous meditation experience. Specifically, we investigated the effect of attentional training on the global precedence effect, i.e., faster detection of targets on a global than on a local level. We expected to find a reduced global precedence effect in meditation practitioners but not in controls, reflecting that meditators can more quickly disengage their attention from the dominant global level. Analysis of reaction times confirmed this prediction. To investigate the underlying changes in brain activity and their time course, we analyzed event-related potentials. Meditators showed an enhanced ability to select the respective target level, as reflected by enhanced processing of target level information. In contrast with control group, which showed a local target selection effect only in the P1 and a global target selection effect in the P3 component, meditators showed effects of local information processing in the P1, N2, and P3 and of global processing for the N1, N2, and P3. Thus, meditators seem to display enhanced depth of processing. In addition, meditation altered the uptake of information such that meditators selected target level information earlier in the processing sequence than controls. In a longitudinal experiment, we could replicate the behavioral effects, suggesting that meditation modulates attention already after a 4-day meditation retreat. Together, these results suggest that practicing meditation enhances the speed with which attention can be allocated and relocated, thus increasing the depth of information processing and reducing response latency

    The time course of cognitive control : behavioral and EEG studies

    Get PDF

    Brain Mechanisms Supporting the Modulation of Pain by Mindfulness Meditation

    Get PDF
    The subjective experience of one’s environment is constructed by interactions among sensory, cognitive, and affective processes. For centuries, meditation has been thought to influence such processes by enabling a nonevaluative representation of sensory events. To better understand how meditation influences the sensory experience, we used arterial spin labeling functional magnetic resonance imaging to assess the neural mechanisms by which mindfulness meditation influences pain in healthy human participants. After 4 d of mindfulness meditation training, meditating in the presence of noxious stimulation significantly reduced pain unpleasantness by 57% and pain intensity ratings by 40% when compared to rest. A two-factor repeated-measures ANOVA was used to identify interactions between meditation and pain-related brain activation. Meditation reduced pain-related activation of the contralateral primary somatosensory cortex. Multiple regression analysis was used to identify brain regions associated with individual differences in the magnitude of meditation-related pain reductions. Meditation-induced reductions in pain intensity ratings were associated with increased activity in the anterior cingulate cortex and anterior insula, areas involved in the cognitive regulation of nociceptive processing. Reductions in pain unpleasantness ratings were associated with orbitofrontal cortex activation, an area implicated in reframing the contextual evaluation of sensory events. Moreover, reductions in pain unpleasantness also were associated with thalamic deactivation, which may reflect a limbic gating mechanism involved in modifying interactions between afferent input and executive-order brain areas. Together, these data indicate that meditation engages multiple brain mechanisms that alter the construction of the subjectively available pain experience from afferent information

    The role of prestimulus activity in visual extinction.

    Get PDF
    Patients with visual extinction following right-hemisphere damage sometimes see and sometimes miss stimuli in the left visual field, particularly when stimuli are presented simultaneously to both visual fields. Awareness of left visual field stimuli is associated with increased activity in bilateral parietal and frontal cortex. However, it is unknown why patients see or miss these stimuli. Previous neuroimaging studies in healthy adults show that prestimulus activity biases perceptual decisions, and biases in visual perception can be attributed to fluctuations in prestimulus activity in task relevant brain regions. Here, we used functional MRI to investigate whether prestimulus activity affected perception in the context of visual extinction following stroke. We measured prestimulus activity in stimulus-responsive cortical areas during an extinction paradigm in a patient with unilateral right parietal damage and visual extinction. This allowed us to compare prestimulus activity on physically identical bilateral trials that either did or did not lead to visual extinction. We found significantly increased activity prior to stimulus presentation in two areas that were also activated by visual stimulation: the left calcarine sulcus and right occipital inferior cortex. Using dynamic causal modelling (DCM) we found that both these differences in prestimulus activity and stimulus evoked responses could be explained by enhanced effective connectivity within and between visual areas, prior to stimulus presentation. Thus, we provide evidence for the idea that differences in ongoing neural activity in visually responsive areas prior to stimulus onset affect awareness in visual extinction, and that these differences are mediated by fluctuations in extrinsic and intrinsic connectivity

    “Thinking about Not-Thinking”: Neural Correlates of Conceptual Processing during Zen Meditation

    Get PDF
    Recent neuroimaging studies have identified a set of brain regions that are metabolically active during wakeful rest and consistently deactivate in a variety the performance of demanding tasks. This “default network” has been functionally linked to the stream of thoughts occurring automatically in the absence of goal-directed activity and which constitutes an aspect of mental behavior specifically addressed by many meditative practices. Zen meditation, in particular, is traditionally associated with a mental state of full awareness but reduced conceptual content, to be attained via a disciplined regulation of attention and bodily posture. Using fMRI and a simplified meditative condition interspersed with a lexical decision task, we investigated the neural correlates of conceptual processing during meditation in regular Zen practitioners and matched control subjects. While behavioral performance did not differ between groups, Zen practitioners displayed a reduced duration of the neural response linked to conceptual processing in regions of the default network, suggesting that meditative training may foster the ability to control the automatic cascade of semantic associations triggered by a stimulus and, by extension, to voluntarily regulate the flow of spontaneous mentation

    Conflict in object affordance revealed by grip force

    Get PDF
    Viewing objects can result in automatic, partial activation of motor plans associated with them—“object affordance”. Here, we recorded grip force simultaneously from both hands in an object affordance task to investigate the effects of conflict between coactivated responses. Participants classified pictures of objects by squeezing force transducers with their left or right hand. Responses were faster on trials where the object afforded an action with the same hand that was required to make the response (congruent trials) compared to the opposite hand (incongruent trials). In addition, conflict between coactivated responses was reduced if it was experienced on the preceding trial, just like Gratton adaptation effects reported in “conflict” tasks (e.g., Eriksen flanker). This finding suggests that object affordance demonstrates conflict effects similar to those shown in other stimulus–response mapping tasks and thus could be integrated into the wider conceptual framework on overlearnt stimulus–response associations. Corrected erroneous responses occurred more frequently when there was conflict between the afforded response and the response required by the task, providing direct evidence that viewing an object activates motor plans appropriate for interacting with that object. Recording continuous grip force, as here, provides a sensitive way to measure coactivated responses in affordance tasks
    corecore