93 research outputs found

    Classification of protein interaction sentences via gaussian processes

    Get PDF
    The increase in the availability of protein interaction studies in textual format coupled with the demand for easier access to the key results has lead to a need for text mining solutions. In the text processing pipeline, classification is a key step for extraction of small sections of relevant text. Consequently, for the task of locating protein-protein interaction sentences, we examine the use of a classifier which has rarely been applied to text, the Gaussian processes (GPs). GPs are a non-parametric probabilistic analogue to the more popular support vector machines (SVMs). We find that GPs outperform the SVM and na\"ive Bayes classifiers on binary sentence data, whilst showing equivalent performance on abstract and multiclass sentence corpora. In addition, the lack of the margin parameter, which requires costly tuning, along with the principled multiclass extensions enabled by the probabilistic framework make GPs an appealing alternative worth of further adoption

    Extraction of Protein Interaction Data: A Comparative Analysis of Methods in Use

    Get PDF
    Several natural language processing tools, both commercial and freely available, are used to extract protein interactions from publications. Methods used by these tools include pattern matching to dynamic programming with individual recall and precision rates. A methodical survey of these tools, keeping in mind the minimum interaction information a researcher would need, in comparison to manual analysis has not been carried out. We compared data generated using some of the selected NLP tools with manually curated protein interaction data (PathArt and IMaps) to comparatively determine the recall and precision rate. The rates were found to be lower than the published scores when a normalized definition for interaction is considered. Each data point captured wrongly or not picked up by the tool was analyzed. Our evaluation brings forth critical failures of NLP tools and provides pointers for the development of an ideal NLP tool

    Text-mining and information-retrieval services for molecular biology

    Get PDF
    Text-mining in molecular biology - defined as the automatic extraction of information about genes, proteins and their functional relationships from text documents - has emerged as a hybrid discipline on the edges of the fields of information science, bioinformatics and computational linguistics. A range of text-mining applications have been developed recently that will improve access to knowledge for biologists and database annotators

    Semi-supervised prediction of protein interaction sentences exploiting semantically encoded metrics

    Get PDF
    Protein-protein interaction (PPI) identification is an integral component of many biomedical research and database curation tools. Automation of this task through classification is one of the key goals of text mining (TM). However, labelled PPI corpora required to train classifiers are generally small. In order to overcome this sparsity in the training data, we propose a novel method of integrating corpora that do not contain relevance judgements. Our approach uses a semantic language model to gather word similarity from a large unlabelled corpus. This additional information is integrated into the sentence classification process using kernel transformations and has a re-weighting effect on the training features that leads to an 8% improvement in F-score over the baseline results. Furthermore, we discover that some words which are generally considered indicative of interactions are actually neutralised by this process
    corecore