3,298 research outputs found

    Analysis and synthesis of iris images

    Get PDF
    Of all the physiological traits of the human body that help in personal identification, the iris is probably the most robust and accurate. Although numerous iris recognition algorithms have been proposed, the underlying processes that define the texture of irises have not been extensively studied. In this thesis, multiple pair-wise pixel interactions have been used to describe the textural content of the iris image thereby resulting in a Markov Random Field (MRF) model for the iris image. This information is expected to be useful for the development of user-specific models for iris images, i.e. the matcher could be tuned to accommodate the characteristics of each user\u27s iris image in order to improve matching performance. We also use MRF modeling to construct synthetic irises based on iris primitive extracted from real iris images. The synthesis procedure is deterministic and avoids the sampling of a probability distribution making it computationally simple. We demonstrate that iris textures in general are significantly different from other irregular textural patterns. Clustering experiments indicate that the synthetic irises generated using the proposed technique are similar in textural content to real iris images

    Tensor Analysis and Fusion of Multimodal Brain Images

    Get PDF
    Current high-throughput data acquisition technologies probe dynamical systems with different imaging modalities, generating massive data sets at different spatial and temporal resolutions posing challenging problems in multimodal data fusion. A case in point is the attempt to parse out the brain structures and networks that underpin human cognitive processes by analysis of different neuroimaging modalities (functional MRI, EEG, NIRS etc.). We emphasize that the multimodal, multi-scale nature of neuroimaging data is well reflected by a multi-way (tensor) structure where the underlying processes can be summarized by a relatively small number of components or "atoms". We introduce Markov-Penrose diagrams - an integration of Bayesian DAG and tensor network notation in order to analyze these models. These diagrams not only clarify matrix and tensor EEG and fMRI time/frequency analysis and inverse problems, but also help understand multimodal fusion via Multiway Partial Least Squares and Coupled Matrix-Tensor Factorization. We show here, for the first time, that Granger causal analysis of brain networks is a tensor regression problem, thus allowing the atomic decomposition of brain networks. Analysis of EEG and fMRI recordings shows the potential of the methods and suggests their use in other scientific domains.Comment: 23 pages, 15 figures, submitted to Proceedings of the IEE

    Registration of 3D Face Scans with Average Face Models

    Get PDF
    The accuracy of a 3D face recognition system depends on a correct registration that aligns the facial surfaces and makes a comparison possible. The best results obtained so far use a costly one-to-all registration approach, which requires the registration of each facial surface to all faces in the gallery. We explore the approach of registering the new facial surface to an average face model (AFM), which automatically establishes correspondence to the pre-registered gallery faces. We propose a new algorithm for constructing an AFM, and show that it works better than a recent approach. Extending the single-AFM approach, we propose to employ category-specific alternative AFMs for registration, and evaluate the effect on subsequent classification. We perform simulations with multiple AFMs that correspond to different clusters in the face shape space and compare these with gender and morphology based groupings. We show that the automatic clustering approach separates the faces into gender and morphology groups, consistent with the other race effect reported in the psychology literature. We inspect thin-plate spline and iterative closest point based registration schemes under manual or automatic landmark detection prior to registration. Finally, we describe and analyse a regular re-sampling method that significantly increases the accuracy of registration

    Unsupervised Machine Learning Algorithms to Characterize Single-Cell Heterogeneity and Perturbation Response

    Get PDF
    Recent advances in microfluidic technologies facilitate the measurement of gene expression, DNA accessibility, protein content, or genomic mutations at unprecedented scale. The challenges imposed by the scale of these datasets are further exacerbated by non-linearity in molecular effects, complex interdependencies between features, and a lack of understanding of both data generating processes and sources of technical and biological noise. As a result, analysis of modern single-cell data requires the development of specialized computational tools. One solution to these problems is the use of manifold learning, a sub-field of unsupervised machine learning that seeks to model data geometry using a simplifying assumption that the underlying system is continuous and locally Euclidean. In this dissertation, I show how manifold learning is naturally suited for single-cell analysis and introduce three related algorithms for characterization of single-cell heterogeneity and perturbation response. I first describe Vertex Frequency Clustering, an algorithm that identifies groups of cells with similar responses to an experiment perturbation by analyzing the spectral representation of condition labels expressed as signals over a cell similarity graph. Next, I introduce MELD, an algorithm that expands on these ideas to estimate the density of each experimental sample over the graph to quantify the effect of an experimental perturbation at single cell resolution. Finally, I describe a neural network for archetypal analysis that represents the data as continuously distributed between a set of extrema. Each of these algorithms are demonstrated on a combination of real and synthetic datasets and are benchmarked against state-of-the-art algorithms

    Stochasticity from function -- why the Bayesian brain may need no noise

    Get PDF
    An increasing body of evidence suggests that the trial-to-trial variability of spiking activity in the brain is not mere noise, but rather the reflection of a sampling-based encoding scheme for probabilistic computing. Since the precise statistical properties of neural activity are important in this context, many models assume an ad-hoc source of well-behaved, explicit noise, either on the input or on the output side of single neuron dynamics, most often assuming an independent Poisson process in either case. However, these assumptions are somewhat problematic: neighboring neurons tend to share receptive fields, rendering both their input and their output correlated; at the same time, neurons are known to behave largely deterministically, as a function of their membrane potential and conductance. We suggest that spiking neural networks may, in fact, have no need for noise to perform sampling-based Bayesian inference. We study analytically the effect of auto- and cross-correlations in functionally Bayesian spiking networks and demonstrate how their effect translates to synaptic interaction strengths, rendering them controllable through synaptic plasticity. This allows even small ensembles of interconnected deterministic spiking networks to simultaneously and co-dependently shape their output activity through learning, enabling them to perform complex Bayesian computation without any need for noise, which we demonstrate in silico, both in classical simulation and in neuromorphic emulation. These results close a gap between the abstract models and the biology of functionally Bayesian spiking networks, effectively reducing the architectural constraints imposed on physical neural substrates required to perform probabilistic computing, be they biological or artificial

    Min–Max Hyperellipsoidal Clustering for Anomaly Detection in Network Security

    Get PDF
    A novel hyperellipsoidal clustering technique is presented for an intrusion-detection system in network security. Hyperellipsoidal clusters toward maximum intracluster similarity and minimum intercluster similarity are generated from training data sets. The novelty of the technique lies in the fact that the parameters needed to construct higher order data models in general multivariate Gaussian functions are incrementally derived from the data sets using accretive processes. The technique is implemented in a feedforward neural network that uses a Gaussian radial basis function as the model generator. An evaluation based on the inclusiveness and exclusiveness of samples with respect to specific criteria is applied to accretively learn the output clusters of the neural network. One significant advantage of this is its ability to detect individual anomaly types that are hard to detect with other anomaly-detection schemes. Applying this technique, several feature subsets of the tcptrace network-connection records that give above 95% detection at false-positive rates below 5% were identified
    • …
    corecore