394,643 research outputs found

    A Mini-History of Computing

    Get PDF
    This book was produced by George K. Thiruvathukal for the American Institute of Physics to promote interest in the interdisciplinary publication, Computing in Science and Engineering. It accompanied a limited edition set of playing cards that is no longer available (except in PDF). This book features a set of 54 significant computers by era/category, including ancient calculating instruments, pre-electronic mechanical calculators and computers, electronic era computers, and modern computing (minicomputers, maniframes, personal computers, devices, and gaming consoles)

    Graphene oxide based synaptic memristor device for neuromorphic computing

    Full text link
    Brain-inspired neuromorphic computing which consist neurons and synapses, with an ability to perform complex information processing has unfolded a new paradigm of computing to overcome the von Neumann bottleneck. Electronic synaptic memristor devices which can compete with the biological synapses are indeed significant for neuromorphic computing. In this work, we demonstrate our efforts to develop and realize the graphene oxide (GO) based memristor device as a synaptic device, which mimic as a biological synapse. Indeed, this device exhibits the essential synaptic learning behavior including analog memory characteristics, potentiation and depression. Furthermore, spike-timing-dependent-plasticity learning rule is mimicked by engineering the pre- and post-synaptic spikes. In addition, non-volatile properties such as endurance, retentivity, multilevel switching of the device are explored. These results suggest that Ag/GO/FTO memristor device would indeed be a potential candidate for future neuromorphic computing applications. Keywords: RRAM, Graphene oxide, neuromorphic computing, synaptic device, potentiation, depressionComment: Nanotechnology (accepted) (IOP publishing

    Graphic Symbol Recognition using Graph Based Signature and Bayesian Network Classifier

    Full text link
    We present a new approach for recognition of complex graphic symbols in technical documents. Graphic symbol recognition is a well known challenge in the field of document image analysis and is at heart of most graphic recognition systems. Our method uses structural approach for symbol representation and statistical classifier for symbol recognition. In our system we represent symbols by their graph based signatures: a graphic symbol is vectorized and is converted to an attributed relational graph, which is used for computing a feature vector for the symbol. This signature corresponds to geometry and topology of the symbol. We learn a Bayesian network to encode joint probability distribution of symbol signatures and use it in a supervised learning scenario for graphic symbol recognition. We have evaluated our method on synthetically deformed and degraded images of pre-segmented 2D architectural and electronic symbols from GREC databases and have obtained encouraging recognition rates.Comment: 5 pages, 8 figures, Tenth International Conference on Document Analysis and Recognition (ICDAR), IEEE Computer Society, 2009, volume 10, 1325-132

    Multi-Level Pre-Correlation RFI Flagging for Real-Time Implementation on UniBoard

    Get PDF
    Because of the denser active use of the spectrum, and because of radio telescopes higher sensitivity, radio frequency interference (RFI) mitigation has become a sensitive topic for current and future radio telescope designs. Even if quite sophisticated approaches have been proposed in the recent years, the majority of RFI mitigation operational procedures are based on post-correlation corrupted data flagging. Moreover, given the huge amount of data delivered by current and next generation radio telescopes, all these RFI detection procedures have to be at least automatic and, if possible, real-time. In this paper, the implementation of a real-time pre-correlation RFI detection and flagging procedure into generic high-performance computing platforms based on Field Programmable Gate Arrays (FPGA) is described, simulated and tested. One of these boards, UniBoard, developed under a Joint Research Activity in the RadioNet FP7 European programme is based on eight FPGAs interconnected by a high speed transceiver mesh. It provides up to ~4 TMACs with Altera Stratix IV FPGA and 160 Gbps data rate for the input data stream. Considering the high in-out data rate in the pre-correlation stages, only real-time and go-through detectors (i.e. no iterative processing) can be implemented. In this paper, a real-time and adaptive detection scheme is described. An ongoing case study has been set up with the Electronic Multi-Beam Radio Astronomy Concept (EMBRACE) radio telescope facility at Nan\c{c}ay Observatory. The objective is to evaluate the performances of this concept in term of hardware complexity, detection efficiency and additional RFI metadata rate cost. The UniBoard implementation scheme is described.Comment: 16 pages, 13 figure
    corecore