3,895 research outputs found

    Medians and Beyond: New Aggregation Techniques for Sensor Networks

    Full text link
    Wireless sensor networks offer the potential to span and monitor large geographical areas inexpensively. Sensors, however, have significant power constraint (battery life), making communication very expensive. Another important issue in the context of sensor-based information systems is that individual sensor readings are inherently unreliable. In order to address these two aspects, sensor database systems like TinyDB and Cougar enable in-network data aggregation to reduce the communication cost and improve reliability. The existing data aggregation techniques, however, are limited to relatively simple types of queries such as SUM, COUNT, AVG, and MIN/MAX. In this paper we propose a data aggregation scheme that significantly extends the class of queries that can be answered using sensor networks. These queries include (approximate) quantiles, such as the median, the most frequent data values, such as the consensus value, a histogram of the data distribution, as well as range queries. In our scheme, each sensor aggregates the data it has received from other sensors into a fixed (user specified) size message. We provide strict theoretical guarantees on the approximation quality of the queries in terms of the message size. We evaluate the performance of our aggregation scheme by simulation and demonstrate its accuracy, scalability and low resource utilization for highly variable input data sets

    Distributed top-k aggregation queries at large

    Get PDF
    Top-k query processing is a fundamental building block for efficient ranking in a large number of applications. Efficiency is a central issue, especially for distributed settings, when the data is spread across different nodes in a network. This paper introduces novel optimization methods for top-k aggregation queries in such distributed environments. The optimizations can be applied to all algorithms that fall into the frameworks of the prior TPUT and KLEE methods. The optimizations address three degrees of freedom: 1) hierarchically grouping input lists into top-k operator trees and optimizing the tree structure, 2) computing data-adaptive scan depths for different input sources, and 3) data-adaptive sampling of a small subset of input sources in scenarios with hundreds or thousands of query-relevant network nodes. All optimizations are based on a statistical cost model that utilizes local synopses, e.g., in the form of histograms, efficiently computed convolutions, and estimators based on order statistics. The paper presents comprehensive experiments, with three different real-life datasets and using the ns-2 network simulator for a packet-level simulation of a large Internet-style network
    corecore