4 research outputs found

    Random Relational Rules

    Get PDF
    In the field of machine learning, methods for learning from single-table data have received much more attention than those for learning from multi-table, or relational data, which are generally more computationally complex. However, a significant amount of the world's data is relational. This indicates a need for algorithms that can operate efficiently on relational data and exploit the larger body of work produced in the area of single-table techniques. This thesis presents algorithms for learning from relational data that mitigate, to some extent, the complexity normally associated with such learning. All algorithms in this thesis are based on the generation of random relational rules. The assumption is that random rules enable efficient and effective relational learning, and this thesis presents evidence that this is indeed the case. To this end, a system for generating random relational rules is described, and algorithms using these rules are evaluated. These algorithms include direct classification, classification by propositionalisation, clustering, semi-supervised learning and generating random forests. The experimental results show that these algorithms perform competitively with previously published results for the datasets used, while often exhibiting lower runtime than other tested systems. This demonstrates that sufficient information for classification and clustering is retained in the rule generation process and that learning with random rules is efficient. Further applications of random rules are investigated. Propositionalisation allows single-table algorithms for classification and clustering to be applied to the resulting data, reducing the amount of relational processing required. Further results show that techniques for utilising additional unlabeled training data improve accuracy of classification in the semi-supervised setting. The thesis also develops a novel algorithm for building random forests by makingefficient use of random rules to generate trees and leaves in parallel

    Pre-Processing Structured Data for Standard Machine Learning Algorithms by Supervised Graph Propositionalization - a Case Study with Medicinal Chemistry Datasets

    No full text
    Graph propositionalization methods can be used to transform structured and relational data into fixed-length feature vectors, enabling standard machine learning algorithms to be used for generating predictive models. It is however not clear how well different propositionalization methods work in conjunction with different standard machine learning algorithms. Three different graph propositionalization methods are investigated in conjunction with three standard learning algorithms: random forests, support vector machines and nearest neighbor classifiers. An experiment on 21 datasets from the domain of medicinal chemistry shows that the choice of propositionalization method may have a significant impact on the resulting accuracy. The empirical investigation further shows that for datasets from this domain, the use of the maximal frequent item set approach for propositionalization results in the most accurate classifiers, significantly outperforming the two other graph propositionalization methods considered in this study, SUBDUE and MOSS, for all three learning methods

    Fifth Biennial Report : June 1999 - August 2001

    No full text
    corecore