63 research outputs found

    Bulking II: Classifications of Cellular Automata

    Get PDF
    This paper is the second part of a series of two papers dealing with bulking: a way to define quasi-order on cellular automata by comparing space-time diagrams up to rescaling. In the present paper, we introduce three notions of simulation between cellular automata and study the quasi-order structures induced by these simulation relations on the whole set of cellular automata. Various aspects of these quasi-orders are considered (induced equivalence relations, maximum elements, induced orders, etc) providing several formal tools allowing to classify cellular automata

    On some one-sided dynamics of cellular automata

    Get PDF
    A dynamical system consists of a space of all possible world states and a transformation of said space. Cellular automata are dynamical systems where the space is a set of one- or two-way infinite symbol sequences and the transformation is defined by a homogenous local rule. In the setting of cellular automata, the geometry of the underlying space allows one to define one-sided variants of some dynamical properties; this thesis considers some such one-sided dynamics of cellular automata. One main topic are the dynamical concepts of expansivity and that of pseudo-orbit tracing property. Expansivity is a strong form of sensitivity to the initial conditions while pseudo-orbit tracing property is a type of approximability. For cellular automata we define one-sided variants of both of these concepts. We give some examples of cellular automata with these properties and prove, for example, that right-expansive cellular automata are chain-mixing. We also show that left-sided pseudo-orbit tracing property together with right-sided expansivity imply that a cellular automaton has the pseudo-orbit tracing property. Another main topic is conjugacy. Two dynamical systems are conjugate if, in a dynamical sense, they are the same system. We show that for one-sided cellular automata conjugacy is undecidable. In fact the result is stronger and shows that the relations of being a factor or a susbsystem are undecidable, too

    Non-Uniform Cellular Automata: classes, dynamics, and decidability

    Get PDF
    The dynamical behavior of non-uniform cellular automata is compared with the one of classical cellular automata. Several differences and similarities are pointed out by a series of examples. Decidability of basic properties like surjectivity and injectivity is also established. The final part studies a strong form of equicontinuity property specially suited for non-uniform cellular automata.Comment: Paper submitted to an international journal on June 9, 2011. This is an extended and improved version of the conference paper: G. Cattaneo, A. Dennunzio, E. Formenti, and J. Provillard. "Non-uniform cellular automata". In Proceedings of LATA 2009, volume 5457 of Lecture Notes in Computer Science, pages 302-313. Springe

    Trace Complexity of Chaotic Reversible Cellular Automata

    Full text link
    Delvenne, K\r{u}rka and Blondel have defined new notions of computational complexity for arbitrary symbolic systems, and shown examples of effective systems that are computationally universal in this sense. The notion is defined in terms of the trace function of the system, and aims to capture its dynamics. We present a Devaney-chaotic reversible cellular automaton that is universal in their sense, answering a question that they explicitly left open. We also discuss some implications and limitations of the construction.Comment: 12 pages + 1 page appendix, 4 figures. Accepted to Reversible Computation 2014 (proceedings published by Springer

    A Full Computation-relevant Topological Dynamics Classification of Elementary Cellular Automata

    Full text link
    Cellular automata are both computational and dynamical systems. We give a complete classification of the dynamic behaviour of elementary cellular automata (ECA) in terms of fundamental dynamic system notions such as sensitivity and chaoticity. The "complex" ECA emerge to be sensitive, but not chaotic and not eventually weakly periodic. Based on this classification, we conjecture that elementary cellular automata capable of carrying out complex computations, such as needed for Turing-universality, are at the "edge of chaos"

    A compact topology for sand automata

    Get PDF
    In this paper, we exhibit a strong relation between the sand automata configuration space and the cellular automata configuration space. This relation induces a compact topology for sand automata, and a new context in which sand automata are homeomorphic to cellular automata acting on a specific subshift. We show that the existing topological results for sand automata, including the Hedlund-like representation theorem, still hold. In this context, we give a characterization of the cellular automata which are sand automata, and study some dynamical behaviors such as equicontinuity. Furthermore, we deal with the nilpotency. We show that the classical definition is not meaningful for sand automata. Then, we introduce a suitable new notion of nilpotency for sand automata. Finally, we prove that this simple dynamical behavior is undecidable
    • …
    corecore