1,691 research outputs found

    Understanding Internet topology: principles, models, and validation

    Get PDF
    Building on a recent effort that combines a first-principles approach to modeling router-level connectivity with a more pragmatic use of statistics and graph theory, we show in this paper that for the Internet, an improved understanding of its physical infrastructure is possible by viewing the physical connectivity as an annotated graph that delivers raw connectivity and bandwidth to the upper layers in the TCP/IP protocol stack, subject to practical constraints (e.g., router technology) and economic considerations (e.g., link costs). More importantly, by relying on data from Abilene, a Tier-1 ISP, and the Rocketfuel project, we provide empirical evidence in support of the proposed approach and its consistency with networking reality. To illustrate its utility, we: 1) show that our approach provides insight into the origin of high variability in measured or inferred router-level maps; 2) demonstrate that it easily accommodates the incorporation of additional objectives of network design (e.g., robustness to router failure); and 3) discuss how it complements ongoing community efforts to reverse-engineer the Internet

    Benchmarking and viability assessment of optical packet switching for metro networks

    Get PDF
    Optical packet switching (OPS) has been proposed as a strong candidate for future metro networks. This paper assesses the viability of an OPS-based ring architecture as proposed within the research project DAVID (Data And Voice Integration on DWDM), funded by the European Commission through the Information Society Technologies (IST) framework. Its feasibility is discussed from a physical-layer point of view, and its limitations in size are explored. Through dimensioning studies, we show that the proposed OPS architecture is competitive with respect to alternative metropolitan area network (MAN) approaches, including synchronous digital hierarchy, resilient packet rings (RPR), and star-based Ethernet. Finally, the proposed OPS architectures are discussed from a logical performance point of view, and a high-quality scheduling algorithm to control the packet-switching operations in the rings is explained

    Application of radio environment maps for dynamic broadband access in TV bands in urban areas

    Get PDF
    Spectrum sharing based on the dedicated databases, particularly in the context of TV band, is widely considered as a promising tool for better spectrum utilization in the future wireless networks. Practical realization of this paradigm entails the need for the true protection of the incumbent system, and at the same time the guarantee of the quality of the services offered to the secondary users. In this respect, this papers discusses the results achieved in numerous measurement campaigns performed for last years in two European cities, i.e., Poznan, Poland and Barcelona, Spain. Both indoor and outdoor measurements of the TV band have been compared with the main purpose of true identification of key practical considerations for spectrum sharing in the TV white spaces. As such the paper constitutes a concise summary of various analyzes and provides pragmatic guidelines for deployment of radio-environment maps (REM) based systems. Based on the conducted measurements and achieved results, the set of practical conclusions for REMs has been deduced, and the prospective procedure of deployment of such a network has been proposed.Peer ReviewedPostprint (published version

    Distributed antenna systems aspects and deployment

    Get PDF
    A lot of schemes are proposed to exploit the transmit diversity. Distributed antenna systems (DAS) constitute one of the most attractive schemes to efficiently achieve the stringent quality of service demands of next generation wireless networks. In this paper, we investigated MISO assisted different transmission techniques used in DAS and the performance of downlink multi-cell DAS in terms of capacity improvement using SINR for different transmission scheme. A system level simulation tool is used to analyze the performance

    Relieving the Wireless Infrastructure: When Opportunistic Networks Meet Guaranteed Delays

    Full text link
    Major wireless operators are nowadays facing network capacity issues in striving to meet the growing demands of mobile users. At the same time, 3G-enabled devices increasingly benefit from ad hoc radio connectivity (e.g., Wi-Fi). In this context of hybrid connectivity, we propose Push-and-track, a content dissemination framework that harnesses ad hoc communication opportunities to minimize the load on the wireless infrastructure while guaranteeing tight delivery delays. It achieves this through a control loop that collects user-sent acknowledgements to determine if new copies need to be reinjected into the network through the 3G interface. Push-and-Track includes multiple strategies to determine how many copies of the content should be injected, when, and to whom. The short delay-tolerance of common content, such as news or road traffic updates, make them suitable for such a system. Based on a realistic large-scale vehicular dataset from the city of Bologna composed of more than 10,000 vehicles, we demonstrate that Push-and-Track consistently meets its delivery objectives while reducing the use of the 3G network by over 90%.Comment: Accepted at IEEE WoWMoM 2011 conferenc
    • 

    corecore